Abstract
This paper describes the implementation of a prediction model for real-time assessment of weather related outages in the electric transmission system. The network data and historical outages are correlated with a variety of weather sources in order to construct the knowledge extraction platform for accurate outage probability prediction. An extension of the logistic regression prediction model that embeds the spatial configuration of the network was used for prediction. The results show that the developed model manifests high accuracy and is able to differentiate an outage area from the rest of the network in 1 to 3 hours before the outage. The prediction model is integrated inside a weather testbed for real-time mapping of network outage probabilities based on incoming weather forecast.