Abstract
Machine learning (ML) models for analyzing medical data are critical for both accelerating development of novel diagnostic and treatment strategies and improving the accuracy of medical care delivery. Our objective was to comprehensively review supervised ML models for diagnosis or treatment prediction. Publications indexed in PubMed were reviewed to identify articles utilizing supervised predictive ML models in medicine. Articles published between 01/01/2020–01/01/2022 were included in this review. Initially, PubMed was searched using MeSH major terms, and if more extensive search results were needed, a broader search was applied (titles/abstracts).
PubMed indexed 21,268 published articles (MeSH Major topic) describing ML methods implemented in medicine. Of those, 11,726 articles were published within the last 2 years. Most of the published ML models in medicine in the last two years were different types of deep learning models (about 75%). Fifty articles were included in this review.
Almost all categories of disease were subjects of ML predictions. Positive and negative factors in each of the scenarios need to be evaluated before the most optimal ML model is selected. Domain knowledge and collaborations between physicians and ML experts can improve the selection and prediction performance of ML models in medicine and facilitate implementation in clinical practice. Predictive ML models could provide recommendations to recruit suitable patients for clinical trials. Prediction ML models may contribute to development of more effective diagnostic and therapeutic choices, founded on evidence-based medicine. A broad range of methodological approaches have been taken toward this goal, and those approaches are presented here with their various advantages and disadvantages.