Abstract
One or more computing devices, systems, and/or methods for generating time-preserving embeddings are provided. User trails of user activities performed by users are generated. Frequencies at which the activities were performed are identified. Indices are assigned to a set of activities identified from the activities as having frequencies above a threshold. Activity descriptions of the set of activities are mapped to the indices to generate a vocabulary. A model is trained using the user trails, timestamps of the activities, and the vocabulary to learn a set of time-preserving embeddings.