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Abstract—Anomaly detection has emerged as a prominent
research area with extensive exploration across various appli-
cations. Existing methods predominantly focus on detecting all
anomalies exhibiting unusual patterns, however, they overlook the
critical need to prioritize the detection of target anomaly cate-
gories (anomalies of primary interest) that could pose significant
threats to various systems. This oversight results in the excessive
involvement of valuable human labor and resources in dealing
with non-target anomalies (that are of lower interest). This
work is focused on target-class anomaly detection, which entails
overcoming several challenges: (1) deficient prior information
regarding non-target anomalies and (2) an elevated false positive
rate caused by the presence of non-target anomalies. Thus, we
introduce a novel semi-supervised model, called TargAD, which
leverages a few labeled target anomalies, along with potential
non-target anomaly candidates and normal candidates selected
from unlabeled data. By introducing a novel loss function, Tar-
gAD effectively maximizes the distributional differences among
normal candidates, target anomalies, and non-target anomaly
candidates, leading to a significant improvement in detecting
target anomalies. Furthermore, when confronted with novel non-
target anomaly scenarios, TargAD maintains its accuracy in
detecting target anomalies. We conducted extensive experiments,
the results of which demonstrate that TargAD outperforms
eleven state-of-the-art baselines on a real-world dataset and three
publicly available datasets, with average AUPRC improvements
of 5.9%-24.8%, 9.2%-57.8%, 2.7%-71.3%, and 2.0%-70.3%,
respectively.

I. INTRODUCTION

The anomaly detection problem aims to identify instances
in data that deviate significantly from normal patterns [1], and
it finds broad applications across various domains, including
financial fraud detection [2], network intrusion detection [3],
healthcare disease detection [4], and image tampering detec-
tion [5], among others. Given the scarcity of anomalies and the
challenges associated with gathering extensive labeled data,
unsupervised anomaly detection methods have emerged as
dominant solutions [6]–[8]. These methods leverage underly-
ing properties of the data, such as distance and density mea-
sures, to effectively detect anomalies. Nevertheless, in practice,
typically a small number of labeled anomalies is available.
Therefore, semi-supervised anomaly detection methods [9]
utilize easily accessible labeled data that provide valuable prior
knowledge for learning representations of normal/anomalous
instances [10]–[14], thus significantly improving detection
accuracy compared to unsupervised methods.
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Fig. 1. Perceived demand against practical demand for anomaly detection
within an integrated payment platform. Training data includes labeled target
anomalies, as well as unlabeled target and non-target anomalies and normal
merchants. (a) Perceived demand (top). Testing data includes unlabeled normal
merchants, target anomalies, and non-target anomalies. The goal is to identify
any anomalies that deviate from usual patterns. (b) Practical demand (bottom).
Testing data may also contain new types of non-target anomalies. The focus
shifts to identifying only target anomalies of primary interest.

The existing methods have demonstrated decent perfor-
mance; however, they assume a uniform risk level for all types
of anomalies and assign equal priority to their identification.
This assumption does not align with the practical demands
inherent in diverse real-world scenarios. We use the following
two cases to illustrate this issue.

• Consider an anomaly detection scenario within an inte-
grated payment platform (as illustrated in Fig. 1), where
over six million merchants are involved. A small subset
of these merchants exhibits anomalous behaviors, cate-
gorized into two distinct risk levels: high-risk anomalies
that could lead to severe economic losses (e.g., fraud
and gambling recharge), and low-risk anomalies that
present minimal threats (e.g., click farming and cash out).
While high-risk anomalies are relatively scarce, typically
amounting to only a few dozen per day, the quantity of
low-risk anomalies significantly surpasses that of high-
risk anomalies, reaching into the thousands. The ratio
of low-risk to high-risk anomalies ranges from 20 to 60
times. Therefore, if all risk levels of anomalies are to be
verified, a substantial amount of human labor and time
(from days up to several weeks) would be required.



• Another example is found in the operation of a large-scale
enterprise network, which generates hundreds of millions
of data packets daily. These data packets potentially
contain various network attacks that could pose threats
to computer systems, but the risk level of these attacks
varies significantly. Some high-risk anomalous events,
such as distributed denial-of-service (DDoS) attacks and
advanced persistent threats (APT), may occur with a
low probability yet have the potential to bring down an
entire system [15], [16]. Conversely, low-risk anomalies
like spam and SQL injection attempts occur nearly every
day but typically do not present actual threats, rendering
the implementation of corresponding security measures
unnecessary [17]. Expecting enterprise security personnel
to oversee all risk levels of anomalies would place a
heavy burden on their shoulders.

Given the varying levels of risks associated with anomalies,
and taking into account the economic, human, and time costs
involved, it becomes imperative to prioritize the identification
of anomalies and specifically target the group of high-risk
anomalies that cause severe harm. These anomalies of high
interest, referred to as target anomalies, represent the primary
focus of detection. The remaining groups of anomalies can
be regarded as non-target anomalies due to their negligible
impact. This requirement motivates us to delve into the
following research question: Is it feasible to develop an
approach capable of precisely identifying target anomalies,
considering that not all anomalies are of primary interest?

We now present two primary challenges encountered when
addressing this research question: (1) The scarcity of prior
information on non-target anomalies. Despite the larger quan-
tity of non-target anomalies compared to target anomalies,
the number of types of non-target anomalies is significantly
greater than that of target anomalies. Since non-target anoma-
lies pose minimal threats, it would be easier to disregard
them. Furthermore, new types of non-target anomalies may
occasionally occur, in which case it would be challenging
to label all types of non-target anomalies in time. (2) High
false positive rate induced by the presence of non-target
anomalies. Non-target anomalies, in fact, exhibit “abnormal”
characteristics compared to normal instances. The existing
approaches for anomaly detection, whether unsupervised [18]
or semi-supervised [11], [13], [19], [20], do not prioritize
the identification of target anomalies. Due to the considerable
quantity of non-target anomalies, the existing approaches may
tend to identify non-target anomalies, thus leading to misiden-
tification of target anomalies that carry greater significance.

To address the aforementioned challenges, we propose
a novel model called TargAD1 (Target-class Anomaly
Detection), which leverages a small number of labeled tar-
get anomalies, as well as potential normal and non-target
anomaly candidates chosen from unlabeled data, to better
detect anomalies that are of primary interest. To address the
issue of lack of priors on non-target anomalies, we utilize

1The code is available at https://github.com/ZhouF-ECNU/TargAD.

multiple Auto-Encoders (AEs) to segregate unlabeled data
into normal candidates and non-target anomaly candidates
based on AEs’ reconstruction errors. A novel loss function is
introduced with the intention of maximizing the distributional
disparities among normal candidates, target anomalies, and
non-target anomaly candidates. Inspired by the concept of
outlier exposure [21], we take non-target anomaly candidates
as out-of-distribution instances compared to normal instances
and target anomalies and calibrate the predictive distribution
of non-target anomalies toward a uniform distribution. This
mechanism enables the proposed model to effectively identify
target anomalies even when new types of non-target anomalies
are introduced.

TargAD offers several advantages in anomaly detection.
First, this study is focused on the detection of target anomalies,
and TargAD provides an effective solution to address this
research problem. Moreover, in contrast to prevailing anomaly
detection methods that classify all types of anomalies into a
single class, TargAD possesses an additional advantage: the
ability to identify non-target anomalies as a separate group
when the need arises to identify other types of anomalies (refer
to Section III-C). These advantages provide a flexible strategy
for real-world applications. The prompt detection of target
anomalies, which carry higher significance, enables timely
attention and facilitates the implementation of corresponding
actions. When sufficient time and human resources are avail-
able, attention can then be given to the remaining types of
anomalies, namely non-target anomalies.

To validate the effectiveness of TargAD in identifying target
anomalies, we conducted experiments on a real-world dataset
and three publicly available datasets commonly used for
anomaly detection. We compared TargAD with eleven state-of-
the-art anomaly detection methods, and the results demonstrate
that TargAD exhibits outstanding performance in terms of
AUROC and AUPRC metrics. Particularly, it excels in terms of
AUPRC, showcasing average improvements of 5.9%-24.8%,
9.2%-57.8%, 2.7%-71.3%, and 2.0%-70.3% across the four
datasets, respectively. In addition, extensive experiments were
conducted to evaluate the model’s robustness, where TargAD
emerged as the top performer as well.

In brief, the main contributions of this paper are:
• We discuss an innovative anomaly detection scenario

where only the anomalies of interest (often wreaking
havoc) need detection. To the best of our knowledge, this
work represents the first endeavor to accurately identify
target anomalies.

• We present a model named TargAD to tackle the chal-
lenges encountered in this scenario. A novel loss function
is introduced to maximize the distributional discrepancies
among normal candidates, target anomalies, and non-
target anomaly candidates. Additionally, we devise a
weight-updating mechanism to effectively mitigate the
presence of noise among non-target anomaly candidates.

• TargAD exhibits an additional advantage that sets it apart
from other baselines, enabling it to effectively differenti-
ate between normal instances, target anomalies, and non-



target anomalies. In essence, TargAD primarily focuses
on detecting target anomalies while also possessing the
ability to identify non-target anomalies.

II. RELATED WORK

In this section, we present the related work within anomaly
detection and out-of-distribution (OOD) detection. The pivotal
objective of our work is to detect target anomalies, and we
draw into OOD ideas to decrease false positives triggered by
non-target anomalies.
Anomaly Detection. Anomaly detection refers to the pro-
cedure of identifying data instances that are inconsistent
with the majority of instance patterns. Owing to the diffi-
culty of collecting large amounts of labeled data, anomaly
detection approaches have primarily focused on unsuper-
vised and semi-supervised learning perspectives. Unsupervised
perspectives typically include isolation-based [18], density-
based [22], distance-based [23], probability-based [24], and
reconstruction-based [6] methods, but such methods lack con-
sideration of prior knowledge regarding real anomalies and
tend to exhibit high false positive rates on real-world datasets.
In contrast, semi-supervised methods take advantage of a small
portion of labeled data for training, avoiding this problem.
Our model likewise utilizes a few labeled anomalies, so we
mainly introduce semi-supervised anomaly detection methods
below. Positive-unlabeled (PU) learning methods [25]–[27]
are extensively applied in semi-supervised anomaly detection,
leveraging positive instances and unlabeled data, but such
methods assume that anomalies are homogeneous. In fact,
anomalies do not satisfy a necessarily unified pattern. Anomaly
detection approaches based on Generative Adversarial Net-
works (GANs) [28], [29] detect anomalies by quantifying the
difference between real and generated instances as an anomaly
score. Some of these methods also incorporate a limited num-
ber of labeled anomalies into their process. For example, PIA-
WAL [29] leverages a small set of labeled anomalies to guide
adversarial learning and generates peripheral normal instances
through a weighted generative model to solve the problem
of insufficient learning of such instances. Several distance-
based [11], [12] semi-supervised anomaly detection methods
have demonstrated remarkable performance. DeepSAD [11]
is an improvement upon unsupervised DeepSVDD [23] by
leveraging labeled anomalies, as its loss function penalizes the
inverse of the distance of these anomalies to the latent space’s
center such that they map farther from the center. Note that
the anomaly detection problem addressed in this work differs
from error detection (e.g., Raha [30]). Error detection aims
to identify features’ values that deviate from the established
ground truth, whereas our study focuses on detecting instance
anomalies.

In real-world scenarios, there are certain anomalies that are
not the primary interest, also known as non-target anomalies.
This poses a significant challenge for semi-supervised models
as they struggle to identify target anomalies effectively. In
contrast to these methods, TargAD takes a different approach
inspired by the concept of OOD. It ensures that the prediction

probability distribution of non-target anomalies tends to a
uniform distribution, mitigating the challenges associated with
misidentifying non-target anomalies as target anomalies.
Out-of-distribution Detection. The task of OOD detection
involves identifying test instances that originate from a dis-
tribution with semantic deviations from the in-distribution
(ID). For instance, in the application of autonomous driving
[31], the system may encounter anomalies during operation
that were not observed during the training phase. On the
one side, experts and scholars actively explore methods to
effectively characterize the distributional disparities between
instances from ID and OOD categories. OOD detection using
deep models dates back to a baseline [32], which utilizes
the maximum softmax probability as the score for ID-ness.
However, overfitting of deep neural networks often results
in high confidence (i.e., softmax overconfidence problem) for
OOD instances, prompting extensive research to address this
challenge [33]–[36]. In a breakthrough, certain studies [37],
[38] suggest utilizing an energy function instead of softmax
for OOD detection to alleviate the overconfidence problem.
On the flip side, some researchers gather an auxiliary set of
OOD instances to assist the model in learning ID/OOD dis-
crepancy, i.e., Outlier Exposure (OE) [21]. However, the space
of collected OOD data may contain numerous uninformative
instances; thus, recent studies have attempted to tackle this
problem by rejecting fuzzy instances around boundaries [39]
and mining valuable outliers [40], [41]. The traditional OE
model typically exhibits awful detection performance when
confronted with unseen OOD instances in the testing data.
Consequently, DOE [42] implicitly leads to data conversion
through model perturbation to ensure consistency in the dis-
tribution of diverse unseen OOD cases.

Unlike OOD detection approaches, our focus is not on de-
tecting such OOD cases but rather on avoiding the misidentifi-
cation of non-target anomalies as target anomalies by utilizing
the concept of outlier exposure. In addition, impure auxiliary
OOD data (mixed with ID instances) leads to poor perfor-
mance of the aforementioned OE models. For this challenge,
we develop a novel weighting mechanism in the TargAD
framework that assigns higher weights to non-target anomalies
and dynamically updates the weights with each iteration.

III. METHODOLOGY

A. Problem Definition

Let D be a training set such that D = DL ∪ DU

(|DL| ≪ |DU |). Namely, DL = {(x1, y1) , . . . , (xr, yr)}
denotes a set of labeled target anomalies. Each x ∈ DL is
a D-dimensional instance associated with a target anomaly
type y ∈ {1, . . . . ,m}, where m is the number of target
anomaly types. On the other hand, DU = {xr+1, . . . ,xN}
represents an unlabeled dataset comprising numerous normal
instances, a fraction of non-target anomalies, and a fraction of
target anomalies. Note that, in practical applications, normal
instances in DU may form several groups. Hence, we use k
to denote the number of such hidden groups.
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Fig. 2. The workflow of TargAD.

The goal is to learn a classifier f that predicts whether a
given instance x is a target anomaly (anomaly of primary in-
terest) or not. The designated output label for target anomalies
is +1, while −1 is assigned to normal instances and non-target
anomalies.

B. Proposed Approach

In this section, we introduce the proposed TargAD model.
Fig. 2 provides an overview of the model’s workflow, en-
compassing candidate selection and detection components. As
there is a lack of prior knowledge about non-target anomalies
and normal instances, we first apply clustering and autoen-
coders to select normal and non-target anomaly candidates. We
next propose a novel loss function in the detection component
to maximize distribution differences among target anomalies,
non-target anomaly candidates, and normal candidates and
further detect target anomalies precisely.

1) Candidate Selection: The objective of this component
is to surmount the challenge arising from the absence of
prior knowledge regarding non-target anomalies and normal
instances. It involves the selection of non-target anomaly
candidates and normal candidates from the unlabeled data so
as to provide essential information on non-target anomalies
and normal instances for the subsequent detection phase.

Note that DU contains numerous normal instances with
diverse patterns. For example, in the context of detecting
fraud in credit card transactions, normal individuals could
be categorized into groups based on their spending habits,
such as low-consumption and high-consumption groups, which
exhibit significant variations in transaction amounts. Thus, we
first apply k-means clustering to partition the unlabeled data
into k groups, denoted as {DU1 ,DU2 , . . . ,DUk

}, ensuring that
the subsequent autoencoders will individually learn from each

group of instances to capture a more precise normal pattern
for the corresponding group.

Considering that autoencoders have demonstrated ro-
bust feature learning capabilities coupled with relatively
low complexity, we apply an autoencoder to each cluster
DUi

(i ∈ {1, 2, . . . , k}) to separate normal and anomalous
instances. The traditional autoencoder is based solely on unsu-
pervised learning. However, since a few labeled target anoma-
lies are available in our setting, inspired by DeepSAD [11], we
leverage such labeled anomalies to modify the loss function
of the traditional autoencoder. More precisely, the objective of
the ith autoencoder AEi is to minimize the following loss:

LAEi
=

1

|DUi
|

∑
x∈DUi

∥∥x− ϕD
i

(
ϕE
i (x)

)∥∥2
+

η

|DL|
∗

∑
x∈DL

(∥∥x− ϕD
i

(
ϕE
i (x)

)∥∥2)−1

,

(1)

where ϕE
i and ϕD

i are the encoder and decoder networks of
the ith autoencoder AEi, respectively, and η is the trade-off pa-
rameter. The first term of LAEi

is used to minimize the recon-
struction error on unlabeled data. The second term penalizes
the inverse of the reconstruction error for labeled anomalies,
encoding the normal instances in the low-dimensional space
in a more compact manner. As the majority of instances in
DU are normal, they are easier to reconstruct from the low-
dimensional space of the autoencoder.

After completing the training of the k autoencoders in
parallel, for an unlabeled instance x ∈ DUi

, we calculate its
reconstruction error, i.e.,

SRec(x) =
∥∥x− ϕD

i

(
ϕE
i (x)

)∥∥2 . (2)



A higher reconstruction error indicates a greater likelihood
of the instance being anomalous. We sort the unlabeled data
in descending order based on their reconstruction errors. The
reconstruction error of the instance ranked at α% is selected
as the threshold, that is, the top α% of instances are consid-
ered as non-target anomaly candidates, denoted as DA

U . The
remaining data, which can be more easily reconstructed from
low-dimensional spaces, are regarded as normal candidates,
denoted as DN

U .
2) Detection: The objective of this component is to address

the issue of false positives caused by misidentifying non-
target as target anomalies. More precisely: (1) We assign
different forms of pseudo-labels to distinguish between labeled
target anomalies, normal candidates, and non-target anomaly
candidates. Through the pseudo-labels assigned to non-target
anomaly candidates, we calibrate the predictive distribution
of non-target anomalies toward a uniform distribution. One
advantage of the proposed pseudo-label design is that it
ensures the predictive probability distribution is calibrated to
a uniform distribution when encountering new types of non-
target anomalies. (2) We maximize the distributional differ-
ences between normal candidates, target anomalies, and non-
target anomaly candidates by introducing a novel loss function.
(3) We effectively tackle noise (comprising target anomalies
and inaccurately reconstructed normal instances) among the
non-target anomaly candidates. For this purpose, we devise
a weight-updating mechanism that assigns higher weights to
potential non-target anomalies.

We commence by describing the pseudo-label setup. As-
sume that the category information of the labeled anomalies
is already provided and involves m classes. The class labels
of the normal candidates are assigned based on their cor-
responding clustering indices. Such category information is
utilized as pseudo-labels encoded into one-hot vectors, guiding
the subsequent classification. Specifically, for anomalies, 1 is
assigned in one of the first m dimensions of the pseudo-label,
such as ỹt = {0, 1, 0, · · · , 0︸ ︷︷ ︸

m

, 0, · · · , 0︸ ︷︷ ︸
k

}. For normal candidates, 1

is assigned in one of the last k dimensions of the pseudo-label,
such as ỹn = {0, · · · , 0︸ ︷︷ ︸

m

, 0, · · · , 0, 1, 0︸ ︷︷ ︸
k

}.

To learn the distinction between normal and anomalous
patterns, we train a conventional classifier, denoted as f (a
simple and effective multi-layer perceptron network is utilized
in our work), on DN

U and DL using the standard cross-entropy
loss, i.e.,

LCE =
1

|DL|
∑

x∈DL

m+k∑
j=1

−ỹtj ∗ log (pj(x))

+
1∣∣DN
U

∣∣ ∑
x∈DN

U

m+k∑
j=1

−ỹnj ∗ log (pj(x)) ,
(3)

where pj(x) represents the probability that classifier f predicts
that x belongs to the jth class, and ỹtj and ỹnj are the
jth elements of pseudo-labels ỹt and ỹn, respectively. The

objective of LCE is to correctly classify target anomalies and
normal instances.

We then introduce the design of pseudo-labels for non-target
anomalies. Inspired by OE [21], we treat non-target anomalies
as out-of-distribution instances since they are unseen anoma-
lies. According to OE [21], the pseudo-labels of non-target
anomalies are initially set to

{
1

m + k
, · · · ,

1

m + k
, · · · ,

1

m + k

}
︸ ︷︷ ︸

m+k
to satisfy a uniform distribution. However, this pseudo-label
setting fails to adequately emphasize the anomalous nature of
non-target anomalies. Therefore, we adjust the pseudo-label
setting to ỹo = { 1

m
, · · · ,

1

m︸ ︷︷ ︸
m

, 0, · · · , 0︸ ︷︷ ︸
k

} to inform the classifier

that non-target anomalies are different from normal instances
and do not belong to any known types of target anomalies. This
modification makes the model more effective at distinguishing
between normal and anomalous patterns. Besides, in the event
of emerging new types of non-target anomalies, since their
learned representation patterns differ from those of target
anomalies and normal instances, the predictive distributions
of these novel types of instances are calibrated to be uniform.

Since non-target anomalies exist in DA
U , as such were

obtained during the candidate selection phase, we assign
ỹo = { 1

m
, · · · ,

1

m︸ ︷︷ ︸
m

, 0, · · · , 0︸ ︷︷ ︸
k

} to the instances in DA
U . However,

non-target anomaly candidates may contain target anomalies
and even some inaccurately reconstructed normal instances
(erroneously filtered as non-target anomaly candidates during
candidate selection). The modified pseudo-label could uniform
the prediction probabilities of these instances. To address this
issue, we propose a novel weight-updating strategy that aims to
mitigate the impact of noisy instances in non-target anomaly
candidates. We utilize the maximum predicted probabilities
across all dimensions of an instance x to calculate its weight,

w(x) =
maxx′∈DA

U
ϵ(x′)− ϵ(x)

maxx′∈DA
U
ϵ(x′)−minx′∈DA

U
ϵ(x′)

, (4)

such that ϵ(x) = maxj=m+k
j=1 pj(x). Owing to the crafted

pseudo-labeling mechanism, when dealing with non-target
anomaly candidates, the ϵ(x) values of normal instances and
target anomalies generally exhibit larger values than those of
non-target anomalies. Consequently, non-target anomalies in
DA

U can be assigned larger weights according to Eq. (4). The
initial weights are assigned as

w0(x) =
maxx′∈DA

U
SRec(x′)− SRec(x)

maxx′∈DA
U
SRec(x′)−minx′∈DA

U
SRec(x′)

, (5)

where SRec(x) is the reconstruction error of x in candidate
selection. Since the reconstruction errors of normal instances
are smaller than those of both target and non-target anomalies,
normal instances are assigned larger weights based on Eq. (5)
during the initialization phase. After applying Eq. (4), the
weights assigned to non-target anomalies undergo an incre-
ment (see Fig. 5(a)).



We design an improved loss that incorporates modified
pseudo-labels and a weight parameter w to constrain the non-
target anomaly candidates, i.e.,

LOE =
1∣∣DA
U

∣∣ ∑
x∈DA

U

w(x) ∗
m+k∑
j=1

−ỹoj ∗ log (pj(x)) , (6)

where ỹoj is the jth element of the pseudo-label ỹo. The tai-
lored loss encourages non-target anomalies to exhibit uniform
distributions across the first m dimensions.

During the initial training iterations, the classifier has not yet
gained adequate knowledge about target anomalies and normal
instances. Influenced by Eq. (6), the probabilities of target
anomalies and normal instances are learned so as to follow
a certain degree of uniform distribution, which consequently
engenders low confidence in predicting target anomalies and
normal instances, as they may exist among non-target anomaly
candidates. To address this concern, we utilize the entropy of
the outputs generated by f on DN

U and DL as a regularizer to
boost the confidence of the classifier’s predictions:

LRE =
1

|DL|+
∣∣DN

U

∣∣ ∑
x∈(DL∪DN

U )

m+k∑
j=1

pj(x) ∗ log (pj(x)) .

(7)
The classifier is optimized by jointly minimizing the three

afore discussed loss functions:

Lclf = LCE + λ1 ∗ LOE + λ2 ∗ LRE, (8)

where λ1 and λ2 are trade-off parameters.
3) Training and Inference: Algorithm 1 outlines the train-

ing procedure of TargAD. The training data is comprised
of a few labeled target anomalies and a large number of
unlabeled instances. As the unlabeled instances consist mainly
of normal instances with multiple patterns, the first step
is to apply k-means to cluster the unlabeled instances into
different groups (Line 1). Next, the labeled target anomalies
and each unlabeled instance cluster are used to train the
corresponding autoencoder, with reconstruction errors serving
as selection scores for the unlabeled instances (Lines 2-5).
All unlabeled instances are sorted in descending order of
their reconstruction errors, and the top α% instances are
selected to form a non-target anomaly candidate set, while the
remaining instances form a normal candidate set (Lines 6-7).
Instances from these two sets, along with labeled anomalies,
are then fed into a classifier for classification. A novel loss
function is designed to maximize differences in distribution
between normal candidates, different types of target anomalies,
and non-target anomaly candidates (Lines 8-16). The training
process culminates in a trained classifier.

For the testing data, a probability distribution is obtained
for each instance using the softmax function of the trained
classifier f . An anomaly score of an instance is calculated
based on the maximum softmax probability among the first m
dimensions of the probability distribution, that is,

Star(x) = max
j∈{1,2,.,m}

pj(x). (9)

Algorithm 1: Training TargAD
input : Training set D, clustering hyperparameter k,

threshold α%, trade-off parameters η, λ1, λ2,
number of classifier’s iterations epochs

output: A trained classifier f (a multi-layer perceptron
network)

1 Apply k-means on DU and then group DU into k
clusters denoted as {DU1

,DU2
, . . . ,DUk

};
2 for i← 1 to k do
3 Train the corresponding AEi on DUi

using Eq. (1);
4 Calculate the reconstruction error SRec(x) for each

instance in DUi
using Eq. (2);

5 end
6 Sort all instances in DU in descending order of

SRec(x);
7 Select top α% instances as DA

U (non-target anomaly
candidates) and remaining instances as DN

U ;
8 Randomly initialize the classifier f ’s parameters;
9 for i← 1 to epochs do

10 if i = 1 then
11 Initialize the weights of non-target anomaly

candidates using Eq. (5);
12 else
13 Update the weights of non-target anomaly

candidates using Eq. (4);
14 end
15 Update the parameters of f using Eq. (8);
16 end
17 Return f .

Thus, a greater value indicates a higher likelihood of the
instance being the target anomaly.

4) Model Complexity: In the following, we discuss the
time complexity of TargAD. The datasets utilized are all in
tabular format, with the size of the input data D represented as
N×D. We first analyze the complexity of candidate selection
(Lines 1-7 in Algorithm 1). The unlabeled data DU undergoes
clustering into k groups which, assuming a maximum of t iter-
ations of clustering, has a complexity of O (t× k ×N ×D).
Given that t and k can be treated as constants, and that
typically t, k ≪ N or/and t, k ≪ D (depending on the dataset
characteristics), the complexity can be simplified to O (ND).
The data from the k clusters are input into the corresponding
autoencoders for parallel training. The autoencoders used
to select candidates are bottleneck networks consisting of
two structurally symmetrical multi-layer perceptron networks.
Each network comprises L hidden layers, with the l-th hidden
layer having dl neurons, and the representation dimension of
the last hidden layer being d. The time complexity of the
feed-forward computation of the parallel-trained autoencoders
in each epoch is O

(
N
k × 2×

(
Dd1 +

∑L−1
j=1 djdj+1 + dld

))
at best (when each cluster is assigned an equal number of
instances) and O

(
N × 2×

(
Dd1 +

∑L−1
j=1 djdj+1 + dld

))
at worst (when all instances are assigned to one cluster).



TABLE I
DETAILED STATISTICS OF THE UNSW-NB15, KDDCUP99, NSL-KDD, AND SQB DATASETS.

datasets D* training set validation set testing set
labeled target unlabeled normal target non-target normal target non-target

UNSW-NB15 196 300 62,631 14,899 334 450 18,601 1,666 2,335
KDDCUP99 32 200 58,524 13,918 419 188 17,380 799 352
NSL-KDD 41 200 45,385 10,743 487 366 13,492 749 629

SQB 182 212 132,028 14,671** 23 142 148,323** 236 1,502
* D is the data dimensionality.
** Since the pure normal instance set cannot be obtained in the SQB dataset, and considering the substantial presence of

normal instances within the unlabeled data, we treat the unlabeled data as normal instances for verification and testing.

Due to the relatively small size of the hidden layer units
and representation dimensions compared to the input data
dimensions, the complexity of training the autoencoders can
be expressed as O (ND). In addition, the process of ranking
the reconstruction error scores involves a time complexity of
O (N logN), thus the overall complexity of candidate selection
can be expressed as O (ND +N logN).

The classifier can be conceptualized as a multi-layer percep-
tron network, with L

′
hidden layers, d

′

l′
number of neurons

in the l
′
-th hidden layer, and d

′
denoting the representation

dimension of the last hidden layer. That being said, the time
complexity of training the classifier (Lines 8-17 in Algo-

rithm 1) is O

(
N ×

(
Dd

′

1 +
∑L

′
−1

j=1 d
′

jd
′

j+1 + d
′

l′
d

′
))

, and

it can likewise be further simplified to O (ND), which is
linear concerning both the input data volume and the input
data dimension.

C. TargAD’s Additional Advantage

The objective of the proposed approach is to identify target
anomalies effectively. The prediction is performed via a binary
classifier based on Eq. (9). Essentially, the utilization of
distinct pseudo-label settings for normal candidates, target
anomalies, and non-target anomaly candidates confers an ad-
ditional advantage to TargAD. It enables TargAD to effectively
identify these three categories of instances based on the
model’s output, setting itself apart from other alternatives in
the domain. Specifically, an instance is classified as normal if
the sum of the predicted probabilities in the last k dimensions
is larger than k

m+k , that is,
∑m+k

j=m+1 pj(x) > k
m+k . Other-

wise, the instance is considered anomalous. Notice that, in
this work, non-target anomalies are taken as out-of-distribution
instances due to their unseen labels. Thus, we can segregate
non-target anomalies into a distinct group by applying out-of-
distribution detection strategies (such as Maximum Softmax
Probability (MSP) [32], Energy Score (ES) [37], and Energy
Discrepancy (ED) [43]). Experiments in Section IV-D6 pro-
vide an extensive discussion of these three strategies to assess
their effectiveness in distinguishing normal instances, target
anomalies, and non-target anomalies.

IV. EXPERIMENTS

A. Datasets

Due to our work assuming the existence of target and non-
target anomaly classes, for experimentation it is essential to

consider datasets that include multiple anomaly classes, rather
than using data containing a single type of anomaly, as some
previous works [12], [13], [18] have done. With this assump-
tion in mind, three publicly available datasets (UNSW-NB152,
KDDCUP993, and NSL-KDD4) that are widely utilized in the
field of anomaly detection and one real-world dataset were
selected to evaluate the effectiveness of our model. Detailed
statistics for the training, validation, and testing sets of these
four datasets can be found in Table I.

The UNSW-NB15 dataset comprises seven distinct anomaly
classes, with each instance in the dataset being characterized
by 196 features. Three anomaly types, namely Generic, Back-
door, and DoS, were designated as target anomaly classes,
while the Fuzzers, Analysis, Exploits, and Reconnaissance
classes were considered as non-target anomaly classes. The
KDDCUP99 dataset originally comprises numerous redundant
features, and we retained 32 features for each instance by elim-
inating redundancy. We selected the R2L and DoS classes as
the target anomaly classes and the probe class as the non-target
anomaly class. The NSL-KDD dataset serves as a revised
version of the KDDCUP99 dataset, the instances which are
described by 41 features. In this dataset, we retained the same
target and non-target anomaly classes as those present in the
KDDCUP99 dataset. For these three datasets, we conducted
random sampling to obtain a limited number of labeled data
regarding the target class anomalies. These labeled anomalies
accounted for approximately 0.16% to 0.48% of the training
data. This aligns with a real anomaly detection scenario, where
a vast majority of the data is unlabeled, and only a tiny portion
is labeled. We selected a portion of target and non-target
anomalies and integrated them with normal instances to create
an unlabeled training dataset, with a default contamination rate
of 5%.

We also utilized the SQB dataset, a real-world dataset,
which comprises the daily transactions of merchants on an
integrated payment platform5 in China. Its primary objective
is to identify merchants engaged in target anomalous activities
that cause serious harm, such as fraud and gambling recharge.
Conversely, anomalies with relatively lower risk levels, such as
click farming and cash out, are considered non-target anomaly

2https://research.unsw.edu.au/projects/unsw-nb15-dataset
3https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
4https://www.unb.ca/cic/datasets/nsl.html
5https://www.shouqianba.com/



classes. Using transaction data collected from the integrated
payment platform spanning April 2021 to April 2022, we
extracted a total of 182 features, including transaction amount,
transaction frequency, payment type, etc. We constructed a
dataset comprising 295,022 unlabeled instances, 471 target
anomalies, and 1,644 non-target anomalies. It is worth noting
that the unlabeled data within the SQB dataset conceals
numerous instances of both target and non-target anomalies,
but the exact proportion of contamination remains unknown.

We preprocessed all four of the utilized datasets, applied
one-hot encoding to the categorical features (where applica-
ble), and mapped all features to the range of [0, 1] using min-
max normalization.

B. Baselines

We compare the performance of TargAD against eleven
state-of-the-art anomaly detection methods. Among these
methods, iForest [18] and REPEN [12] are unsupervised mod-
els, while the others are semi/weakly-supervised approaches.

• iForest [18] identifies anomalies in light of the number
of times required to isolate instances by isolation trees.

• REPEN [12] is an instantiation of the RAMODO frame-
work that learns a small set of features tailored for
distance-based anomaly detectors.

• ADOA [19] clusters observed anomalies and applies
filtering of unlabeled data, using the resulting instances
to construct a weighted multi-class model.

• FEAWAD [44] encodes hidden representation, recon-
struction residual vector, and reconstruction error into
representations of input data for anomaly detection.

• PUMAD [25] uses a distance hashing-based method to
filter unlabeled instances for deep metric learning.

• DevNet [13] employs end-to-end learning of anomaly
scores based on neural deviation learning, leveraging a
few labeled anomalies and Gaussian priors.

• DeepSAD [11] introduces a novel loss term for labeled
anomalies, pushing them away from the one-class center.

• DPLAN [20], based on the deep reinforcement learning,
is designed to empower anomaly detection agents to learn
from labeled anomalies and extend the acquired anomaly
patterns for detecting unknown anomalies.

• PIA-WAL [29] utilizes labeled anomalies to guide an ad-
versarial training process and generates peripheral normal
instances through a weighted generative model, aiming to
better understand the characteristics of such instances.

• Dual-MGAN [45] combines two sub-GANs to perform
active learning and data augmentation strategies to ensure
accurate anomaly detection.

• PReNet [46] randomly samples two instances from the
training set to form instance pairs and learns instance pair
features and anomaly scores by predicting the relation of
sampled instances.

C. Parameters Setup and Metrics

TargAD applied the Adaptive Moment Estimation (Adam)
optimizer to update the model parameters. It was trained using

a learning rate of 0.0001 and batches of 256 instances for
LAEi , while for Lclf , a learning rate of 0.00001 and batches
of 128 instances were used. The optimization process for
both loss functions involved a total of 30 iterations each. The
value of the clustering hyperparameter k was selected based
on the elbow method. The threshold for candidate selection
was set to 5%. The trade-off parameter η was set to 1 in
the autoencoders’ loss function. For the loss function Lclf ,
the trade-off parameters λ1 and λ2 were set to 0.1 and 1,
respectively. These hyperparameters were determined based
on the model’s performance on a separate validation set.
The initial parameters for the baselines were set according
to the specifications provided in their respective papers and
subsequently fine-tuned to achieve the best possible perfor-
mance. All models were implemented in Python 3, and the
experiments were conducted on an Alibaba Cloud DSW server
equipped with Intel Xeon Platinum 8269CY CPU, Ubuntu
18.04 operating system, and 60 GB of memory.

We utilize two widely accepted and complementary per-
formance metrics, Area Under the Precision Recall Curve
(AUPRC) and Area Under the Receiver Operating Char-
acteristic Curve (AUROC), to evaluate the effectiveness of
TargAD and that of the baseline methods. In anomaly detection
applications, AUPRC is considered a more suitable metric than
AUROC as AUPRC reflects the identification performance
of positive classes. A higher AUPRC value, closer to 1,
indicates a more accurate detection of anomalous instances.
The reported AUROC and AUPRC results for all models
are the average values obtained from 5 independent runs. In
addition, when analyzing the identification performance of
non-target anomalies (see Section IV-D6), we also assessed
additional metrics derived from the confusion matrix, includ-
ing Precision, Recall, and F1-Score.

D. Experimental Results and Analysis

We address the following research questions (RQs) in the
experimental analysis. The first five questions are related to
detecting target anomalies, while the last question concerns the
additional advantage that TargAD offers. RQ1: How does our
model’s performance on the four datasets compare to that of
the baselines? RQ2: What is the performance and robustness
of TargAD when confronted with situations involving (1)
new types of non-target anomalies in the testing data, (2)
variations within the number of target anomaly classes, (3)
reductions of the amount of labeled target anomalies, and (4)
fluctuations of the anomaly contamination rate? RQ3: What
are the contributions of various terms in the loss function of
the classifier? RQ4: Is the weight-updating strategy devised
in LOE effective? RQ5: How sensitive is TargAD to the
hyperparameter α, and trade-off parameters η, λ1, and λ2?
RQ6: How effective is TargAD in discerning among normal
instances, target anomalies, and non-target anomalies?

1) Overall Performance (RQ1): Table II presents the re-
sults of TargAD and the baselines on the four datasets with
respect to the AUPRC and AUROC metrics. Our model
demonstrates the most outstanding performance in terms of



TABLE II
AUROC AND AUPRC PERFORMANCE (± STANDARD DEVIATION) OF TARGAD AND ELEVEN SOTA BASELINE METHODS.

Models AUPRC AUROC
UNSW-NB15 KDDCUP99 NSL-KDD SQB UNSW-NB15 KDDCUP99 NSL-KDD SQB

iForest 0.301±0.036 0.333±0.033 0.356±0.010 0.035±0.009 0.783±0.011 0.944±0.006 0.917±0.002 0.912±0.003
REPEN 0.276±0.039 0.545±0.016 0.524±0.078 0.013±0.001 0.875±0.016 0.957±0.006 0.905±0.009 0.855±0.003
ADOA 0.226±0.007 0.236±0.010 0.210±0.006 0.018±0.002 0.852±0.006 0.933±0.004 0.900±0.005 0.921±0.003

FEAWAD 0.540±0.031 0.593±0.033 0.741±0.013 0.057±0.036 0.946±0.010 0.975±0.008 0.968±0.005 0.942±0.012
PUMAD 0.573±0.011 0.922±0.027 0.691±0.039 0.202±0.017 0.903±0.023 0.982±0.003 0.954±0.018 0.978±0.006
DevNet 0.671±0.014 0.912±0.017 0.850±0.013 0.126±0.006 0.950±0.004 0.993±0.001 0.985±0.001 0.977±0.002

DeepSAD 0.677±0.017 0.765±0.018 0.752±0.029 0.132±0.003 0.974±0.001 0.993±0.001 0.986±0.001 0.985±0.001
DPLAN 0.658±0.037 0.834±0.066 0.832±0.029 0.151±0.005 0.951±0.006 0.985±0.004 0.973±0.007 0.971±0.003

PIA-WAL 0.698±0.024 0.780±0.074 0.893±0.010 0.139±0.010 0.946±0.010 0.977±0.007 0.981±0.001 0.963±0.005
Dual-MGAN 0.646±0.027 0.866±0.006 0.725±0.010 0.096±0.007 0.913±0.004 0.988±0.002 0.969±0.003 0.969±0.006

PReNet 0.712±0.009 0.920±0.003 0.787±0.022 0.125±0.002 0.937±0.001 0.992±0.001 0.983±0.001 0.972±0.002
TargAD 0.804±0.001 0.949±0.006 0.913±0.006 0.261±0.024 0.978±0.001 0.994±0.001 0.988±0.001 0.958±0.006

AUPRC and AUROC on the three publicly available datasets.
It is evident that TargAD exhibits substantial advancements
in accurately detecting target anomalies when compared to
other baseline methods. TargAD consistently outperforms the
baselines on the UNSW-NB15, KDDCUP99, and NSL-KDD
datasets, showcasing average AUROC improvements of 0.4%-
19.5%, 0.1%-6.1%, and 0.2%-8.8%, respectively. AUPRC
serves as a reliable metric for identifying target anomalies
when the data is unbalanced, and TargAD’s AUPRC perfor-
mance demonstrates average improvements of 9.2%-57.8%,
2.7%-71.3%, and 2.0%-70.3%, respectively. Further, TargAD’s
performance is considerably stable across the three publicly
available datasets, as evidenced by its significantly smaller
standard deviations of AUROC and AUPRC in comparison
to the other methods. In the real-world application involving
merchant anomaly detection (the SQB dataset), TargAD ex-
hibits significant AUPRC performance improvements, with an
average improvement ranging between 5.9% and 24.8%.

From Table II, we discerned that, except for ADOA, the per-
formance of the eight semi-supervised methods surpasses that
of the unsupervised iForest and REPEN. This discrepancy can
be ascribed to the capability of the semi-supervised methods
to effectively leverage the available supervision information
obtained through labeled target anomalies. Despite constituting
a tiny fraction of the training data (i.e., 0.16%-0.48%), these
labeled instances play an indispensable role in bolstering the
model’s overall performance.

The next involves convergence analysis, which aims to
assess the model’s generalization performance and stability.
Fig. 3(a) depicts the curve representing the loss values output
by TargAD after each training epoch. Starting from the 15th

epoch, the fluctuation in TargAD’s loss value remains within a
narrow range, indicating that the model gradually converges.
Additionally, Fig. 3(b) presents the AUPRC performance at
each epoch for TargAD and the semi-supervised baselines
during the testing phase. Compared to other models, TargAD
not only achieves the optimal AUPRC performance but also
accomplishes this outcome with fewer epochs, highlighting the
faster convergence of our model.

2) Robustness Analysis (RQ2): We conducted experiments
on the UNSW-NB15 dataset to compare and analyze the
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Fig. 3. Convergence analysis of the model. (a) The loss value of TargAD
at each epoch during training. (b) AUPRC performance at each epoch for
TargAD and baseline models during testing.

robustness of TargAD in detecting target anomalies against
other semi-supervised baselines. This dataset was chosen as it
encompasses multiple anomaly types, making it suitable for
exploring various scenarios discussed in this section.

We first evaluated the performance of TargAD and other
baselines in the presence of new types of non-target anomalies
in the testing data. The testing set contains four specific
non-target anomaly types (Fuzzers, Analysis, Exploits, and
Reconnaissance). To investigate this scenario, we perturbed
the number of non-target anomaly types among the unlabeled
portion of the training data, varying this number among four
different settings: 4 classes (four types of non-target anomalies
identical to the ones originally present in the testing set),
3 classes (Fuzzers, Analysis, and Reconnaissance), 2 classes
(Analysis and Reconnaissance), or 1 class (Reconnaissance).
The objective is to determine the presence of 0, 1, 2, or 3 new
types of non-target anomalies within the testing data. Fig. 4(a)
shows the AUPRC performance of TargAD and other baseline
methods in the context of varying numbers of novel non-
target anomaly types in the testing set. TargAD exhibits better
stability in detecting target anomalies when confronted with
new non-target anomaly types, consistently maintaining an
AUPRC performance of approximately 0.8; while the AUPRC
performance of alternative approaches remains below 0.72 and
manifests certain declines as the number of novel non-target
anomaly types increases. When the number of new non-target
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Fig. 4. AUPRC performance of TargAD and the baseline models in identifying target anomalies on the UNSW-NB15 dataset w.r.t. different (a) numbers of
new non-target anomaly types (b) numbers of target anomaly classes, (c) numbers of labeled target anomalies and (d) contamination rates.

anomaly types changes from 1 to 2, there is an observed
improvement in DPLAN’s AUPRC. This improvement can be
attributed to the model’s ability to leverage deep reinforcement
learning, allowing it to extend the learned anomaly patterns.
The experimental results in this scenario imply that our model
possesses greater adaptability to detect target anomalies in
scenarios involving the emergence of novel anomalies.

In practical application scenarios, the number of anomaly
classes that are of interest can vary. Therefore, we then
proceeded to evaluate the performance of TargAD when con-
fronted with different numbers of target anomaly classes in the
training set. Specifically, we systematically varied the number,
denoted as m, of target anomaly classes, incrementing it from
1 to 6. Correspondingly, the number of non-target anomaly
types was decreased from 6 to 1. Fig. 4(b) illustrates the
AUPRC performances of TargAD and other baseline methods
for varying numbers of target anomaly classes within the
training set. Across all of the above six settings, TargAD
consistently outperformed the other baselines in terms of
AUPRC. The results confirm that our model has the capability
to adapt to diverse detection scenarios irrespective of whether
they involve the identification of a single or multiple target
anomaly types, and TargAD consistently improves the detec-
tion accuracy irrespective of the number of target anomalies.
TargAD and the baseline models achieve better results when
confronted with a single type of target anomaly compared to
situations involving multiple types of target anomalies. The
rationale is that a single class of target anomaly provides more
advantageous conditions for learning anomaly patterns.

Our model and the semi-supervised baselines utilize a small
number of labeled target anomalies to provide prior knowledge
concerning anomalies, aimed at imporving detection accuracy.
Thus, we next analyze the influence of variations in the number
of labeled anomalies within the training set on the model’s
performance. The labeled anomalies encompass three distinct
types (Generic, Backdoor, and DoS), with the quantity of each
available labeled anomaly type varying within {20, 60, 100}.
The anomaly contamination rate of the unlabeled data was
fixed to be 5%. Fig. 4(c) displays the AUPRC performance of
TargAD and the baselines as the number of labeled anomalies
changes. TargAD exhibits a certain level of robustness in

the face of varying numbers of labeled anomalies while
consistently delivering commendable AUPRC performance,
even in scenarios where limited quantities of labeled anomalies
are available. As the number of labeled anomalies increases,
the AUPRC performance of TargAD and the baseline models
improves. This is because a larger volume of labeled data
generally facilitates to better train the model, thereby endow-
ing the models with more comprehensive insights into each
distinct class of target anomalies.

In unlabeled training data, there is often an inherent pro-
portion of anomaly contamination. To assess the robustness of
TargAD against varying contamination rates (representing the
proportion of anomalies) in unlabeled training data, we con-
ducted experiments using contamination rates selected from
the set {3%, 5%, 7%, 9%}. Under these four contamination
rate settings, we kept the available labeled target anomaly
classes to be Generic, Backdoor, and Analysis, with each class
comprising 100 instances. The AUPRC results of TargAD
and the baselines under different contamination rates are
illustrated in Fig. 4(d). Drawing upon the observed results,
we can make the following remarks. Despite the presence of
different anomaly contamination levels, TargAD consistently
outperforms the other baseline models, yielding better AUPRC
improvements against each. It is intriguing to observe that both
TargAD and the baseline models achieve better target anomaly
identification results at mid-range contamination rates (5% or
7%). When the contamination rate of unlabeled data is low,
the candidate selection phase of TargAD is adversely affected.
This can be attributed to the fixed threshold (α) of 5%, leading
to a higher proportion of real normal instances among the
selected non-target anomaly candidates. It is easier for the
baseline models to learn the characteristics of normal instances
under a lower contamination rate, but they lack sufficient focus
on anomalous patterns. As the contamination rate continues
to rise, TargAD maintains its stability; whereas the baseline
models may struggle to cope with the noise due to the weak
supervision information of labeled anomalies, resulting in a
decline in their AUPRC performance.

3) Ablation Study (RQ3): To assess the contribution of
different loss terms in the Lclf on the identification of
target anomalies, we conducted ablation experiments with



TABLE III
AUROC AND AUPRC PERFORMANCE (± STANDARD DEVIATION) OF

TARGAD AND ITS ABLATED VARIANTS ON THE UNSW-NB15 DATASET.

Models AUPRC lift(%) AUROC lift(%)
TargAD−O 0.784±0.004 2.0 0.973±0.002 0.5
TargAD−R 0.786±0.002 1.8 0.966±0.001 1.2

TargAD−O−R 0.764±0.003 4.0 0.958±0.003 2.0
TargAD 0.804±0.001 0.978±0.001

(a) (b)

Fig. 5. Effects of the designed weight-updating strategy on normal instances,
target anomalies, and non-target anomalies. (a) Evolution of weight values for
the three types of instances at each epoch. (b) Weight density distributions
for the three types of instances at the final epoch.

(a) (b)

Fig. 6. (a) AUPRC and (b) AUROC performance of TargAD on the UNSW-
NB15 dataset under different values of the threshold α and the ground truth
contamination rates.

three variants: TargAD−O−R, TargAD−O, and TargAD−R.
TargAD−O−R represents the scenario where the classifier
solely uses LCE for parameter updates. TargAD−O excludes
LOE from Lclf , while TargAD−R excludes LRE from Lclf .
The results of the three ablated model variants and TargAD on
the UNSW-NB15 dataset, in terms of AUROC and AUPRC,
are presented in Table III. TargAD exhibits the best perfor-
mance with respect to both AUROC and AUPRC metrics,
showcasing an average improvement ranging from 0.5% to
2% for AUROC, and from 2% to 4% for AUPRC. Notably,
TargAD−O−R presents comparatively inferior performance
when compared to the exclusion of LOE or LRE from the
loss function of the classifier. This ablation study underscores
the significance of the LOE and LRE terms in the training of
the classifier.

4) Effect of the weight-updating strategy (RQ4): Below
we provide a comprehensive analysis of the effectiveness of
the weight-updating strategy incorporated in LOE. Fig. 5(a)
presents a visualization depicting the average weights assigned
to the three types of instances (inaccurately reconstructed

normal instances, target anomalies, and non-target anoma-
lies) for the non-target anomaly candidates at each epoch.
The initialization of instance weights occurs during the first
iteration of the classifier training, following Eq. (5). Nor-
mal instances exhibit comparatively low reconstruction errors,
leading to their assignment of higher weights, whereas target
anomalies and non-target anomalies are assigned relatively
lower weights. Subsequently, weight updates are performed
according to Eq. (4), giving higher weights to the non-target
anomalies. Fig. 5(a) shows that, by the second epoch, the
average weight of the normal instances experiences a sig-
nificant decrease, ultimately becoming the lowest among the
weights of the three instance types. As the training progresses,
specifically after the ninth epoch, the average weight of the
non-target anomalies surpasses that of the target anomalies and
normal instances, and the weights of all three instance types
converge to a stable state.

Furthermore, Fig. 5(b) displays a comprehensive illustration
of the density distribution of weights for the three instance
types during the final epoch. Within the low-weight region,
the density peak associated with the non-target anomalies is
distinctly lower compared to the other two instance types.
In contrast, the distribution of non-target anomalies becomes
increasingly concentrated in the high-weight region. The ex-
perimental findings unequivocally attest to the effectiveness
of the designed weight-updating strategy in assigning higher
weights to non-target anomalies. This strategy effectively tack-
les the issue of noise present among the non-target anomaly
candidates.

5) Parameter sensitivity (RQ5): To investigate TargAD’s
sensitivity with respect to α, we analyze its robustness
under different ground truth contamination rates. Consider-
ing different values of α (α ∈ {1%, 5%, 10%, 15%, 20%}),
We run TargAD on the UNSW-NB15 dataset whose unla-
beled training data with contamination rates varying from
{1%, 5%, 10%, 15%}. Fig. 6 presents a matrix showing the
average AUPRC and AUROC performance of TargAD as these
two variables undergo variations. When the ground truth con-
tamination rate remains constant, TargAD demonstrates robust
performance as long as the selected α value remains below the
contamination rate. Conversely, surpassing the contamination
rate with the chosen α value leads to a consistent decline
in TargAD’s effectiveness. This decline can be attributed to
the erroneous inclusion of more real normal instances as non-
target anomaly candidates due to the elevated α value. The
predicted probabilities for such normal instances in the clas-
sifier training phase converge towards a uniform distribution,
consequently hampering the model’s overall performance.

We then run experiments on the UNSW-NB15 dataset for
η ∈ {0, 0.01, 0.1, 1, 10, 100} to analyze the sensitivity of
TargAD with respect to the trade-off parameter η. Fig. 7(a)
shows the AUROC and AUPRC results of TargAD across
various values of the trade-off parameter η. When η is set
to 0, indicating that the autoencoders responsible for selecting
potential non-target anomaly candidates and normal candidates
were not trained using labeled target anomalies, the model’s



(a) (b) (c)

Fig. 7. Performance of TargAD with different trade-off parameter values. (a) AUROC (left) and AUPRC (right) performance under varying values of η in
LAEi

. (b) AUPRC performance under different values of λ1 and λ2 in Lclf . (c) AUROC performance under different values of λ1 and λ2 in Lclf .

TABLE IV
PRECISION, RECALL, AND F1-SCORE PERFORMANCE USING DIFFERENT STRATEGIES IN TARGAD.

Strategies
Maximum Softmax Probability (MSP) Energy Score (ES) Energy Discrepancy (ED)
Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

normal instances 0.935 0.972 0.953 0.934 0.982 0.957 0.936 0.970 0.953
target anomalies 0.644 0.812 0.718 0.571 0.291 0.385 0.810 0.438 0.569

non-target anomalies 0.414 0.209 0.278 0.375 0.351 0.362 0.449 0.467 0.458
macro avg 0.665 0.664 0.650 0.627 0.541 0.568 0.732 0.625 0.660

weighted avg 0.861 0.882 0.867 0.849 0.866 0.854 0.877 0.879 0.874

performance significantly deteriorates. As η increases above
0, TargAD exhibits certain robustness to variations in η.

In addition, we conduct experiments while keeping the
trade-off parameter η = 1 and varying the trade-off parameters
λ1, λ2 ∈ {0.01, 0.1, 1, 2, 5, 10} to inspect the sensitivity of
TargAD to them. The AUPRC and AUROC performances are
depicted in Fig. 7(b) and Fig. 7(c), respectively. The results
suggest that the loss function for training TargAD classifiers
tends to take smaller λ1 and λ2 values. When the value of λ1

or λ2 exceeds 1, the performance of our model undergoes a
decline. Specifically, when λ1 assumes larger values, the focus
of the classifier shifts towards the learning of instances within
the non-target anomaly candidates while neglecting adequate
attention to instances in DN

U and DL. Therefore, the model’s
performance suffers a decline. Similarly, a higher value of λ2

reduces the prediction confidence for non-target anomalies, as
they might be present among the normal candidates, thereby
leading to a deterioration in the model’s performance.

6) Non-target Anomaly Identification(RQ6): As previously
mentioned in Section III-C, TargAD offers a unique capability
of distinguishing among normal instances, target anomalies,
and non-target anomalies by identifying non-target anoma-
lies as a separate group based on OOD detection strategies.
This facilitates flexible adjustment of detection goals to meet
specific requirements in practical applications, setting it apart
from alternative approaches. We conducted experiments by
employing three distinct strategies: MSP [32], ES [37], and
ED [43]. The results, presented in Table IV, demonstrate that
the ED strategy outperforms MSP and ES in recognizing non-
target anomalies with respect to Precision, Recall, and F1-
Score metrics. This superiority can be attributed to the fact that
ED not only maintains the energy’s nature to mitigate the issue

of overconfidence but also takes into account the overall distri-
bution of logits. In addition, to assess the overall effectiveness
of identifying the three types of instances (normal instances,
target anomalies, and non-target anomalies), we applied two
averaging methods: macro average and weighted average. The
results in Table IV indicate that using the ED strategy yields
superior performance over the other two strategies in the
comprehensive identification of the three types of instances.

V. CONCLUSION

In this paper, we tackle a crucial yet overlooked practical
scenario of anomaly detection in which not all anomalies are
of primary interest due to varying risk levels. We introduce
TargAD, a semi-supervised anomaly detection model specif-
ically designed to overcome the challenges associated with
identifying target anomalies that present severe threats. The
model incorporates a selection mechanism to filter out normal
and non-target anomaly candidates and utilizes a novel loss
function that maximizes the distributional disparities among
normal candidates, target anomalies, and non-target anomaly
candidates. Extensive experiments demonstrate that the pro-
posed model achieves exceptional performance in effectively
identifying target anomalies, significantly outperforming state-
of-the-art methods in terms of AUPRC. Compared to the al-
ternatives, TargAD exhibits superior robustness while attaining
precise detection even with fewer labeled target anomalies.
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