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Abstract—An end-to-end supervised learning method is proposed 

for fault detection in the electric grid using Big Data from multiple 

Phasor Measurement Units (PMUs). The approach consists of 

preprocessing steps aimed at reducing data noise and dimensionality, 

followed by utilization of six classification models considered for 

detecting faults. Three of the models were variants of Convolutional 

Neural Network (CNN) architectures that consider a single type of 

measurement (voltage, current or frequency) at all PMUs or all types 

together also at all PMUs. CNN based models were compared to 

traditional methods of Logistic Regression (LR), Multi-layer 

Perceptron (MLP) and Support Vector Machine (SVM). Evaluation 

was conducted on two-year data measured by PMUs at 37 locations 

in a large electric grid. The response variable for classification were 

extracted from the grid-wide outage event log. Experiments show 

that CNN-based models outperformed traditional methods on one 

year out-of-sample outage detection over the entire grid. 

 
Index Terms—Big data applications, Event detection, Machine 

learning, Phasor measurement units, Power system faults, 

Dimensionality reduction, Smart grids, Time series analysis, 

Neural networks, Convolutional neural networks 

I.  INTRODUCTION 

hasor measurement Units (PMUs) provide measured 

estimates of voltage and current phasors, as well as 

frequency and rate of change of frequency (ROCOF) to the 

transmission grid operators and planners [1], providing a high-

resolution real-time network view for situational awareness, as 

well as historical data for post-mortem analysis of various types 

of system disturbances. With the deployment of more and more 

PMUs in the nation’s power grid, the increase in the amount of 

available data has reached a challenging level for utilities. To 

fully exploit the value of such large datasets, new techniques 

are being developed that can provide more automated and pro-

active practices. Many utilities are starting to rely on the Big 

Data technologies to store, process, and analyze the large PMU 

datasets. Despite increased deployment, currently, the PMUs 

are still sparsely located covering typically less than 5% of the 

system electrical buses. In addition, the placement density in 

various geographical regions may be uneven. 
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A.  Problem Statement and Study Objectives      

Several research questions related to power system fault 

detection are addressed in this study. First question is how to 

detect and characterize the power system faults based on a 

reduced set of PMUs in the Western interconnection in the USA 

(representing a small proportion of the actual network PMU’s), 

where the faults may be causing a system wide manifestation 

(ex. frequency events) while actually being localized (ex. line 

faults). Given the small number of PMUs and the occurrence of 

local faults that could be anywhere in the system, the chances 

of the PMU placement coinciding with the location of the fault 

being detected is rather small, so the detection and classification 

of the faults based on the measurements taken at a distance from 

the fault occurrence location is an additional challenge that the 

proposed techniques need to handle. Second question is how to 

design automated detection systems that doesn’t rely on 

extensive manual study of data and feature engineering. Due to 

real-time operation needs at the control centers, processing of 

large number of PMU measurement streams within a required 

time interval creates an additional constraint. 

B.  Related Work 

Event detection and classification is a classical machine 

learning problem with multiple effective and well-studied 

methods proposed such as decision trees, support vector 

machine (SVM) and Bayesian models [1]. However, such 

methods might not perform well on sensor data due to high 

dimensionality, autocorrelation, and other factors. An overview 

of various data mining techniques and their use in power system 

analysis based on PMU measurements can be found in [2]. The 

existing methods vary mostly based on a 

classification/clustering algorithm, and the feature extraction 

method used to generate inputs to the classification algorithm. 

A PMU-based fault detection using Wavelet analysis was 

proposed in [4]. There is also a method based on the fast variant 

of the Discrete S-Transform feature extraction using Extreme 

Learning Machine (ELM) classifier [5]. Due to the high volume 

of PMU data, multiple studies were based on dimensionality 

reduction using Principal Component Analysis [6,7]. Several 

studies used Minimum Volume Enclosing Ellipsoid to extract 
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features needed for the classification and clustering algorithms 

[8,9]. There is also a study using an unsupervised learning 

technique based on Agglomerative Hierarchical Clustering [8]. 

An explainable pattern-recognition method based on domain-

specific Shapelets was proposed, where both K-Nearest 

Neighbor (KNN) and Support Vector Machine (SVM) were 

successfully used for classification [3]. 

Various event detection techniques were suggested for 

classifying temporal data from a timeseries perspective. Some 

reported results include feature-based techniques [9], shapelet 

subsequence matching methods [10], timeseries modeling [11], 

techniques with adapted distance matrices and kernels methods 

such as SVM with Dynamic Time Warping. Such techniques 

are representationally powerful but their applicability to big 

PMU measurements might be limited as they can suffer from 

slow execution times, curse of dimensionality and the need of 

time-consuming handcrafted features. 

Several recent studies utilized Convolutional Neural 

Networks in grid fault detection. In a recent study [12], Pseudo 

continuous quadrature wavelet transform was used to generate 

featured scalograms, then the scalograms (treated as two 

dimensional images) were used to train CNN network for fault 

classification. ROCOF signal and the radial active shift (RAS) 

signal were utilized as indicators for frequency disturbance 

faults [13]. Images were constructed from the RAS and ROCOF 

signals and used to train a convolutional network for fault 

classification. Similar, the data were embedded as images and 

used as an input to convolutional networks [14]. Another 

approach of using CNNs is introduced in [15], where 2-

dimentional filters were used on matrices representing the 

different signal types used in the study. Convolutional networks 

were trained to detect faults in a wide area measurement system. 

Also, a convolutional based model that relies on extracting 

features from the signals before using them in the convolutional 

network was introduced in [16]. 

C.  Purpose and Novelty 

The purpose of this study is to show how to utilize PMUs 

measurements along with the supplied event log to design an 

event detection system, which can be leveraged in an online 

mode for automated power systems fault detection. Our study 

shows how to overcome common problems with PMU 

measurements such as sparsity of the PMU measurements, data 

quality issues and the need for tedious and costly manual 

processing and feature engineering.  

The novelty of the proposed approach is in designing end-

to-end power systems fault detection with automated data 

reduction, de-noising techniques, and automated feature 

learning from measurements of a reduced set of PMUs. 

D.  Contribution and Advantages 

In this study, six classification models are considered for 

fault detection. Three of the considered classifiers were variants 

of Convolutional Neural Network (CNN) architectures that 

consider a single type of input variable (voltage, current or 

frequency measurements) at all PMUs or all types together also 

at all PMUs. These models, named Single Channel CNN (SC-

CNN), Parallel Channel Embedding CNN (PCE-CNN), and 

Simultaneous Channel Embedding CNN (SCE-CNN) were 

compared to traditional Logistic Regression (LR), Multi-layer 

Perceptron (MLP) and Support Vector Machine (SVM) using 

measurements from all PMUs. We propose a different approach 

to using CNN based models where automated de-nosing 

techniques are applied to the measurements and then parallel 

and concatenation-based convolutional models are utilized for 

fault detection, which is different from image based 

convolutional models and feature based convolutional models 

discussed earlier.  

In the conducted experiments, CNN-based models 

outperformed traditional methods on one year out-of-sample 

outage detection over the entire grid, providing evidence that 

the convolution operations leveraged in CNN models seem to 

capture the sub-signal patterns relevant to fault detection 

missed by traditional approaches. The best AUC (0.83) was 

obtained from the multi-channel model SCE-CNN. The 

obtained results provide evidence that localized fault-related 

line outage can be detected with good and reliable performance 

using CNN based models.   

The proposed method is a data driven approach, where 

manual feature engineering is avoided. Furthermore, this model 

is scalable. Also, it avoids using costly representations of data 

(such as images), which is usually associated with CNNs. Table 

1 shows a comparison of alternative models using the 

aforementioned advantages. 
TABLE I 

Comparison of the proposed to alternative event detection models. ( ) 

represents if the referenced model(s) has one or more of the comparison 

categories. 

 Data 

Driven  

Scalability Data 

Representation 

[3]    

[7, 10]   

[8]   

[4, 5, 12, 13, 

14, 15, 16] 

   

Proposed   

 

The paper is organized as follows: after the Introduction, we 

explain the fault detection modeling in Section II, discuss data 

management problems in Section III, provide experimental 

results in Section IV, and summarize conclusions in Section V.  

II.  FAULT DETECTION MODELING  

Two Convolutional Neural Network (CNN) architectures for 

fault detection from PMU-generated data streams are proposed, 

one being a generalization of the other.  

 

Problem definition. Suppose that multiple PMU devices 𝑃 =
{𝑝1, 𝑝2, … , 𝑝|𝑃|} in a system are measuring several variables 

(such as voltage magnitude, current magnitude, frequency, etc.) 

during a time period [𝑡 − Δ1, 𝑡 + Δ2]. In this context, each 

variable measured by the PMU is called a channel. Given a 

multi-channel signal: 

𝐬(𝑡 − Δ1, 𝑡 + Δ2) = [𝐬(1)(𝑡 − Δ1, 𝑡 + Δ2), . . . , 
                                   𝐬(𝐶)(𝑡 − Δ1, 𝑡 + Δ2)] , 

(1) 

each 𝐬(𝑐)(𝑡 − Δ1, 𝑡 + Δ2) ∈ ℝ𝑙 is the signal summarizing the 𝑐-

th variable (channel) across all PMUs, for 𝑐 = 1, … , 𝐶. For 

simplicity of notation, we will use 𝐬 and 𝐬(𝑐) to represent 
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𝐬(𝑡 − Δ1, 𝑡 + Δ2) and 𝐬(𝑐)(𝑡 − Δ1, 𝑡 + Δ2), respectively. 

Given 𝐬, or one of its channels 𝐬(𝑐), the fault detection 

objective is to predict 𝑦 ∈ {0,1} indicating whether or not a 

fault occurred during [𝑡 − Δ1, 𝑡 + Δ2]. The fault of interest in 

this study is line outage, but the methodology is applicable to a 

larger range of faults.  

From a machine learning perspective, the aforementioned 

fault detection problem can be formulated as a binary 

classification problem, which has been thoroughly studied in 

the machine learning community. Given a collection of 

measurements, one may, in principle, apply some of the readily 

available classification models to differentiate faults from 

signals indicating normal operation. The traditional classifiers 

would treat the measurements taken at a certain timestep across 

the signals as independent from the measurements taken at 

other timesteps. However, the heterogeneity of the different 

types of PMU-generated measurements would be difficult to 

account for in traditional classification frameworks that 

typically assume homogeneous inputs. Thus, we propose 

adopting convolutional neural network-based approaches as 

they are inherently designed to learn from correlated 

heterogeneous measurements.  

A.  Single-channel Convolutional Neural Networks (SC-CNN) 

The objective of SC-CNN is to model a single-channel (i.e. 

one-dimensional) signal 𝐬(𝑐). The signal originating from a 

single channel suggests that it can only be of a certain type, i.e. 

it can contain measurements from a single variable (such as 

voltage magnitude, voltage angle, current magnitude, current 

angle, or frequency). For example, 𝐬(𝑐) can carry information 

only about the voltage magnitude across all PMUs in the 

system, but not about any other variable that was measured by 

the same PMUs. 

Convolution layers. When analyzing only signals from one 

PMU channel, the patterns that characterize abnormal behavior 

(such as a fault-related line outage) are typically manifested in 

their sub-signals. To capture such patterns, the original signal 

𝐬(𝑐) is transformed such that the sub-signal patterns are 

emphasized upon its transformation. For this purpose, 𝐬(𝑐) is 

passed through a so-called convolution layer. Namely, 𝐬(𝑐) is 

initially convolved with a 1-D convolution window (also 

referred to as kernel) 𝐤𝑗
[1]

 of size 𝑘1: 

𝑣𝑖,𝑗
[1]

= ∑ 𝑠𝑖+𝑤
(𝑐)

∗ 𝑘𝑞,𝑗
[1]

𝑘1

𝑤=1

 ,   

∀𝑖 = 1, … , 𝑙 − 𝑘1 + 1 . 

(2) 

Note that, in the above equation, the bias terms are omitted for 

simplicity. 

This operation is performed for 𝑚1 different kernels 

𝐤1
[1]

, … , 𝐤𝑚1

[1]
, thus defining 𝑚1 output filters, i.e. 

 

𝐯𝑗
[1]

= [𝑣1,𝑗
[1]

, … , 𝑣𝑙−𝑘1+1,𝑗
[1]

] . (3) 

 

for each 𝑗 = 1, … , 𝑚1. 

Essentially, the convolved outputs 𝐯𝑗
[1]

 can be thought of as 

a summarization of the original signal, in which certain 

characteristic ‘shapes’ from 𝐬(𝑐) should be emphasized. 

Nevertheless, some problems may require capturing higher-

order characteristics, beyond the shapes captured by the initial 

convolution layer. We consider fault detection to be one of 

these challenging problems, thus an additional convolution 

layer is introduced. More precisely, the outputs from the first 

convolutional layer are further convolved 𝑚2 times: 

𝑣𝑞,𝑟
[2]

= ∑ ∑ 𝑣𝑞+𝑤,𝑗
[1]

∗ 𝑘𝑤,𝑗,𝑟
[2]

𝑚1

𝑗=1

 

𝑘2

𝑤=1

,  

∀𝑞 = 1, … , 𝑙 − 𝑘1 − 𝑘2 + 2 . 

(4) 

where 𝐊𝑞
[2]

= [𝑘𝑤,𝑗,𝑟
[2]

]𝑤=1,𝑗=1
𝑘2,𝑚1  is of size 𝑘2 × 𝑚1, for each 𝑟 =

1, … , 𝑚2. Similarly, as used in the first convolution layer, the 

bias terms are omitted from the notation for simplicity. 

 

Output layer. The resulting hidden vector reshaped and 

mapped to a single neuron whose value is subsequently passed 

to a sigmoid activation function to obtain the fault occurrence 

(𝑦 = 1) probability: 

𝑃(𝑦|𝐡) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐡𝐰) =
1

1 + 𝑒−𝐡𝐰
 , (5) 

where 𝐰 ∈ ℝ𝑑 .   

 

Learning. Provided a collection of signals 𝑆 = {𝐬1, … , 𝐬𝑁}, 

the parameters of the whole single-channel CNN architecture 

are determined such that the binary cross-entropy loss is 

minimized, that is 

∑ −𝑦𝑛 log 𝑃(𝑦𝑛|𝐡𝑛) − (1 − 𝑦𝑛) log(1 − 𝑃(𝑦𝑛|𝐡𝑛))

𝑁

𝑛=1

 (6) 

B.  Multi-channel Convolutional Neural Networks (MC-CNN) 

Although SC-CNN transforms a single channel 𝐬(𝑐) of the 

input signals to capture sub-signal patterns that characterize 

abnormal behavior, such patterns might exist across multiple 

channels. Moreover, patterns relating to faults may not be 

evident from looking into a single channel, but rather across 

multiple channels of the same PMU. We also propose two 

concatenation-based CNN variants for fault detection across 

multiple channels. 

Parallel Channel Embedding based Convolutional 

Neural Network (PCE-CNN). Each 𝐬(𝑐) is passed through a 

separate 1-D convolution layer to obtain its corresponding 

convolutional embeddings. The convolutional embeddings 

from all 𝐶 channels are then concatenated in an extended vector. 

Subsequently, the convolved are reshaped and mapped to a 

single output to determine the probability of a fault occurrence.  

Simultaneous Channel Embedding based Convolutional 

Neural Network (SCE-CNN). Instead of learning 𝐶 parallel 

sets of convolutional embeddings, this variant concatenates the 

input signals from all channels 𝐬(1), 𝐬(2), … , 𝐬(𝐶) and passes 

their concatenation in a 2-D convolution layer. Subsequently, 

the convolved vectors are reshaped and mapped to an output 

layer which determines the fault occurrence probability 

conditioned on the original multi-channel measurement.  

Fig. 1 represents an overview of the proposed models. 
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Fig 1. Diagram representing the introduced model variants.   

III.  DATA MANAGEMENT 

A.  Data Description 

The dataset used in this study was collected from a set (Ρ) 

of 37 PMUs from the Western interconnection in the United 

States. The dataset is completely anonymized to remove all 

critical energy infrastructure information including the network 

topology, the location of PMUs or events described in the event 

log (𝐸).  The PMU inputs are multiple voltage and current 

waveforms, and PMU outputs are phasor signals with multiple 

variables characterizing separate properties of the input 

waveforms such as magnitude, angle and frequency. Quite 

often the output phasors for three phases of voltages and 

currents are transformed into a single positive sequence voltage 

or current phasor. For each PMU 𝑝 ∈ 𝑃, measurements were 

collected for 2 years (2016, 2017) at 30 to 60 frames per second 

(FPS). For each timestep 𝑡 (in UTC), voltage, current and 

system frequency are reported. For voltage and current, both 3-

phase and positive sequence values are reported, and both 

magnitude and angle are reported for the individual 

measurements. 

Along with the measurements, an event log (𝐸) is provided. 

In this event log, a certain number of events that happened in 

the grid are listed. For each 𝑒 ∈ 𝐸, the start and end time stamps 

to a minute resolution is provided in some cases in addition to 

a description of the event type. The event log doesn’t contain 

any information regarding the geographical location of the fault 

or the proximity of a fault to a certain PMU.  

Several characteristics of this problem are in line with the 

defined fundamental characteristics of Big Data [17], such as 

Volume (the used dataset size is in the Terabytes), Velocity 

(Phasor data is reported at 30 or 60 FPS), Variety (several 

vintage points are measured by each PMU) and Validity (PMU 

data has several data quality issues such as missing data). 

B.  Data Preprocessing 

The provided PMU measurements in its original format is 

very large and noisy, and not suitable for model training. To 

mitigate this, a series of data management steps were performed 

before proceeding with the model training and evaluation. 

    1)  Extracting labeled sub-interval signals.  

The first data preprocessing step is data windowing, where 

the PMU measurements is split into sub-signals (windows) of 1 

minute, using the UTC timestamps. Since the measurements are 

sampled at different sampling rates, the 1-minute sub-interval 

signals can vary in size, for example 1 minute at 30 FPS is 

equivalent to 1,800 data points and 1 minute at 60 FPS is 

equivalent to 3,600 data points. To unify the data, all sub-

interval signals are down sampled (using averaging) to 30 FPS. 

Next step was to label the sub-signals. Labeling in this context 

refers to intersecting the sub-signal timesteps with event log 

(𝐸) provided with the dataset. This step produces a binary label, 

which indicates if an event occurred at this sub-interval signal 

or not. The labeled sub-signals created in this process become 

hugely unbalanced due to inherited characteristics of PMU data 

where the majority of the data is not labeled as events (normal 

operations). This result rendered model training problematic. 

Furthermore, normal operation data is fairly stable (including 

some normal variation due to load adaptations and other electric 

grid operational properties). Given aforementioned 

characteristics of the data, not all data was necessary for model 

training. The temporal data around the event is considered the 

most informative, hence a time window around the event is kept 

and the remaining parts of the data are discarded. If an event is 

marked at timestamp 𝑡, a time period of [𝑡 − ∆1, 𝑡 + ∆2] is kept, 

where ∆1, ∆2 refers to two separate time differences before and 

after the event. By examining the data and consulting with the 

subject matter experts, values of 3 mins and 6 seconds, and 54 

seconds were given for ∆1, ∆2 respectively allowing the total of 

time around the event to equal 4 minutes. This process of 

extracting the sub-signals is done individually for each 𝑝 ∈ 𝑃. 

The resulting dataset contains different types of events. To keep 

the data homogeneous, line outage faults was the type of event 

considered in this study. 

    2)  Computing smoothed 𝑝-centers. 

After performing the steps discussed earlier, each sub-signal 

is represented as a tensor of 1,800 ×  # 𝑠𝑖𝑔𝑛𝑎𝑙𝑠 ×  𝑠𝑖𝑧𝑒 𝑜𝑓 𝑃. 
This representation introduces a computational challenge in 

model training and model inference, since each tensor 

representing 1 minute of PMU measurements (sub-signals from 

all PMUs) can have a large number of data points, for example, 

for 50 PMUs and only 3 signals the number of data points can 

reach 270,000, which is challenging for model training and 

inference. Another issue inherited from the PMU data is that the 

fault’s signature characteristics are not necessarily evident on 

all PMUs, which can be due to geographical factors (i.e. how 

far the faults are from the PMU).  Also, this limitation can be 

related to a topological characteristic of the grid (for example, 

if the PMU is behind a power transformer, the effect of a fault 

can be diminished for such a PMU). This high dimensionality 

of noisy data can be an impediment for model training. One 

technique to mitigate this problem is to find a simplified 

representation of the data that maintains the information 

contained in such tensors but reduces the data size and noise.  
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The first step taken to reduce the data is down sampling. The 

technique used in down sampling should be chosen to preserve 

the information of the data. One characteristic of fault-related 

line outages is that a sudden disturbance is seen in the PMU 

measurements, the realization reached by manually examining 

a certain number of faults across different time periods. By 

correlating the event log with the collected measurements, 

sudden disturbances are usually seen when a fault-related line 

outage happens. In this case, to down sample the data and 

preserve such characteristic, down sampling is performed as 

following: each 1,800 data point sub-signal is divided into a list 

of non-overlapping windows (𝑊) of size 10, where for each 

𝑤 ∈ 𝑊, the range of data points is calculated. In the case of 

sub-signals of length 1,800, this will reduce data to 180 points. 

The reason behind using a range to summarize the windows is 

that a range preserves the distortions and sudden jumps. 

The second step is calculating 𝑝-centers, where each 𝑝-

center is a sub-signal that represents all sub-signals for a 

specific time window across all 𝑝 ∈ 𝑃. After calculating the 𝑝-

center, each 1-minute window is represented by a 1 vector (sub-

signal) that represents all 𝑝 ∈ 𝑃. The process of creating the 𝑝-

centers takes care of two issues. Firstly, it reduces the 

dimensionality of the data while keeping the useful information. 

Secondly, it emphasizes the change in the sub-signals produced 

by the PMUs that detected the fault, and this is achieved using 

a weighted approach, where the weights are extracted 

dynamically for each time window. Such a weighting scheme 

is necessary since there is no guarantee that there is a single 

PMU that will be significant for all faults. The significance of 

the PMU can be controlled by the geographical proximity of the 

PMU to the fault.  

Since the geographical information was provided for neither 

the PMU nor the fault, another scheme must be adapted. To 

calculate smooth 𝑝-centers, the Differentiable Loss Function 

for Time-Series based on Soft-DTW [18] technique is used in 

our study. Several techniques are proposed in the literature to 

calculate centers of timeseries, such as Euclidean, Regularized 

Wasserstein Distance, and Dynamic Time Warping (DTW).  

Such techniques tend to overfit and get influenced by noise. 

Instead, a smoothed formulation of DTW, namely Soft-DTW, 

is used. Soft-DTW considers all alignments and not just the 

optimal one, and computes in reasonable time by utilizing the 

fact that gradients of soft-DTW are differentiable w.r.t to all of 

its variables. This characteristic can be used to calculate centers 

of groups of timeseries which better summarizes the data and 

reduces the dimensionality. In the context of summarizing PMU 

data, Soft-DTW can calculate 1 vector (sub-signal) that 

represents all 𝑝 ∈ 𝑃 for a certain time window and a certain 

signal. To preserve the characteristic that faults are not 

necessarily shown on all PMUs, and to minimize the chances of 

normal operation overcoming the fault information, weights are 

given to each vector (sub-signal) coming from each 𝑝 ∈ 𝑃. 

Such weights cannot be predetermined as discussed before, 

thus; dynamic weights are needed. In this experiment, a weight 

relying on the standard deviation (𝜎) of the time window is 

used. The reasoning behind choosing 𝜎 is that despite that the 

signals have significant variation over long period of time, on a 

sub-subinterval signal level, the signals are less varying unless 

there is a fault. This step is performed separately for each 

channel. 

IV.  EXPERIMENTAL EVALUATION 

A.  Prediction models 

Six models where used in the experiments. The introduced 

Single-channel Convolutional Neural Network (SC-CNN) 

using either voltage, current or frequency. The two introduced 

multi-channel models (Parallel Channel Embedding based 

CNN (PCE-CNN), Simultaneous Channel Embedding based 

CNN (SCE-CNN)). Also, three traditional models where used: 

Logistic Regression (LR), Multi-layer Perceptron (MLP) and 

Support Vector Machine (SVM). 

B.  Experimental Setup 

    1)  Data split.  

The preprocessed 24-month dataset described in Section III 

was split into training and test sets. Namely, to capture the 

seasonal patterns that span throughout the year, all prediction 

models (described in Section IV) were trained on preprocessed 

signals from 2016 and tested on signals from 2017. This 

resulted in a total number of 704 training signals (out of which 

176 were fault-related line outages), while the number of 

signals for testing was 848 (212 of them being fault-related line 

outages). 

We considered 3 channels across all signals: positive 

sequence voltage magnitude (𝑉), positive sequence current 

magnitude (𝐼), and frequency (𝑓). Note that, once all channels 

are considered, the total number of measurements (i.e. the total 

number of samples over all signals) in the dataset was 838,080; 

out of which 380,160 were contained in the training set, while 

the test set contained the remaining 547,920. 

    2)  Number of PMUs. 

Measurements from all available PMUs are used for training 

and testing using the data split. Section IV Sub-section D 

discusses the effect of number of PMUs on model performance. 

    3)  Model parameters.  

In conducted experiments, an embedding dimension of 30 

was used for the models that employ a fully-connected layer to 

learn dense embeddings before the final output layer (these 

include all models except for LR). SVM uses a linear kernel and 

a value of 1 for the Regularization parameter. As for the CNN 

variants (SC-CNN, PCE-CNN, SCE-CNN), in the 

convolutional layer, a 1-D kernel of size 30 was used with a 

stride of 30. The number of output filters (i.e. the 

dimensionality of the convolutional embeddings) was set to 

150. All prediction models were implemented in Python 3.7 and 

run on a Linux machine with 64GB of memory and a 20-core 

Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz. 

    4)  Evaluation metrics. 

To evaluate the degree to which the models’ predictions 

match the original fault occurrence labels, Accuracy (ratio of 

correctly classified fault-related outages) was measured. As for 

the relevance of the fault probability scores associated with the 

predictions, the Area under the Receiver Operating 

Characteristic curve (AUC) was calculated. Note that the values 

of both metrics range from 0 to 1, such that larger values 

indicate higher classification (and thus fault detection) 

performance. 

C.  Fault Detection Performance 

The performances of the prediction models for the task of 

detecting faults were evaluated and compared using the 
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classification metrics and data split outlined earlier. All 

available PMUs are utilized. The results obtained from this 

evaluation are presented in Table II where for LR, MLP and   

SVM the results are reported only for experiments based on 

voltage since LR, MLP and SVM showed best performance on 

voltage. 

Discussion. From Table II, it can be observed that CNN-

based variants perform comparable to, or in most cases, better 

than traditional classification models. This suggests that the 

convolution operations leveraged in CNN models seem to 

capture the sub-signal patterns relevant to fault detection.  

 
TABLE II 

Fault detection performance across multiple evaluation metrics. The largest 

metric values are bolded, while ‘*’ indicates comparable performance. For 

traditional models, we reported only for best performing input (𝑉) 

Models Input Accuracy AUC 

Traditional 

LR  𝑉  0.6320  0.7846 

MLP 𝑉  0.6615  0.7455 

SVM 𝑉  0.8066*  0.7937 

Single 

channel 

SC-CNN 𝑉  0.7464 0.8016* 

SC-CNN 𝐼  0.7228  0.7654 

SC-CNN 𝑓  0.6851  0.7305 

Multi-

channel 

PCE-CNN  𝑉, 𝐼, 𝑓  0.7971* 0.8151* 

SCE-CNN 𝑉, 𝐼, 𝑓  0.7971* 0.8316* 
 

Among the CNN variants, the multi-channel CNNs trained 

yield the largest accuracy and AUC. The corresponding ROC 

curve plots are presented in Fig. 2.  

Between the single channel models, SC-CNN trained on 

voltage produces the highest accuracy and AUC. This is 

expected since the voltage signals would typically experience a 

visible drop in magnitude during the fault that can be observed 

from multiple PMUs in the vicinity of the fault, thus providing 

a strong identifier of the fault. This makes voltage the best 

candidate to detect faults. Otherwise, if the PMU placement was 

not as sparse, the rapid change in current would be much more 

prominent indicator of a fault. On the other hand, the impact on 

frequency at the rest of the network (outside of faulted line) may 

not be as prominent due to the frequency being highly regulated 

as a global property of the system. As mentioned earlier, the 

impact on the current is very predictable on the line where the 

fault has occurred, where the current goes high and then drop to 

zero when the fault is cleared. However, the impact on current 

magnitude at other locations in the network where PMU 

measurements are taken can be different, without a specific 

pattern that the algorithm can exploit for accurate prediction. 

For all faults, only one of the PMUs or none is near the fault 

location. Thus, the percentage of PMUs that would provide 

current measurement with precise characteristics is exceedingly 

small.   

The multi-channel CNNs, on the other hand, further 

improve CNN-SC (voltage) accuracy by large margins (~5%) 

in additional to AUC lifts. Considering that both multi-channel 

variants obtain comparable performance, our suggestion is for 

PCE-CNN to be used when a large number of parameters is not 

an issue. In contrast, one should use SCE-CNN in case a slight 

decrease in performance is allowed for the benefit of having a 

simpler model. Additionally, training and inference times for 

CNN based model are within practical ranges. Data reduction 

techniques helped keeping training time under 20 seconds and 

inference times under a second, using the hardware described 

earlier. Overall, although voltage signal was the most 

 
Fig 3. Frequency and Voltage during the misclassified time window. 

 

Inaccurate evet log (E) label 
Actual fault 

Actual fault 

 
Fig 2. ROC curves of traditional classifiers (left), single-channel CNNs (middle), and multi-channel CNNs (right). 
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informative for predicting fault-related line outages, multi-

channel CNNs achieved the best trade-off between accuracy 

and AUC. 

For each of the eight classifiers considered in this study the 

top 10 misclassified cases by each classifier were visually 

inspected to determine the potential cause of wrong 

classification. In Table III faults marked as false labels were not 

evident in PMU measurements but were labeled as fault-related 

line outage cases in the event log, while faults marked as false 

predictions were misclassified cases where visual inspection 

verified that these were actual faults.  For a majority of the cases 

the fault was not present in the measurements according to the 

visual inspection. The reason for occurrence of these cases that 

appear misclassified but are correctly classified by the 

algorithms is that event log labels used for the study were not 

fully accurate. This is a consequence of the labels extracted 

from the utility’s event log not accurately representing the start 

of the fault, nor the duration of the fault’s visibility in the PMU 

measurements. 
TABLE III 

Visual inspection of the top 10 misclassifications by eight models 
 

Models 
Cases of misclassification 

False labels False predictions 

LR, MLP, SVM 9 1 

SC-CNN (voltage) 9 1 

SC-CNN (current) 7 3 

SC-CNN (frequency) 6 4 

PCE-CNN 8 2 

SCE-CNN 9 1 

 

For example, the fault illustrated at Fig. 3 has started at 

06:52:05 and effectively lasted until 06:52:08. However, the 

event log places this fault at 06:54. Thus, the label for time 

window between 06:54 and 06:55 was set to a value of 1 (fault) 

according to the event log, which is wrong since the complete 

fault ended before 06:54. During the time window 06:54 to 

06:55 there is no visible fault as can be confirmed from Fig. 3. 

D.  The Effect of Number of PMUs on Model Performance 

This section examines the effects of the number of PMUs 

on model performance. Fig. 4 shows the AUC for different 

number of PMUs using SCE-CNN. For each number of PMUs, 

10 different random selections of PMUs were performed, then 

the model is trained and tested separately on each set of PMUs. 

Fig. 4 shows that the variation of performance (shown in the 

standard deviation of AUC) decreases as the number of PMUs 

increase. This behavior is expected since fault can be observed 

from multiple PMUs in the vicinity of the fault. Since the PMUs 

are randomly selected without a prior knowledge of any spatial 

information or the proximity to the fault locations, the choice of 

PMU can affect the performance of the model. From Fig. 4, one 

can see that the performance of the model stabilizes at the range 

of 20 to 25 PMUs. This suggests that a smaller number of PMUs 

can be used with an acceptable model accuracy. 

V.  CONCLUSION 

We implemented an end-to-end fault detection model for the 

electric grid using measurements from a reduced set of Phasor 

Measurement Units (PMUs). Several results were achieved: 

• Novel and effective data preprocessing techniques are 

used to lower data dimensionality and reduce noise 

• The proposed model is compared to three base models: 

Single Channel CNN (SC-CNN), Parallel Channel 

Embedding CNN (PCE-CNN), and Simultaneous 

Channel Embedding CNN (SCE-CNN). Each model 

introduced a different flavor of utilizing the data.  

• The impact of the selected models is shown by utilizing 

a two-year recording of PMU measurements collected 

from a reduced set of PMUs, along with their event log. 

Through automated data preprocessing and reduction 

techniques, the models detect fault-related line outage 

faults with good performance.  

• Convolutional Neural Networks based models 

achieved the best performers. Faults were predicted 

with good performance (AUC of 0.8016 for SC-CNN, 

0.8151 for PCE-CNN and 0.8316 for SCE-CNN). The 

best performance was obtained using SCE-CNN.   

• The experiments show the effects of the quality of the 

event log on the prediction results by manually 

examining a certain number of events (Table III). An 

acceptable accuracy can be stabilized using a lower 

number of PMUs than originally available. 

 

 
Fig 4. Reported AUC for different number of PMUs. 

VI.  DISCLAIMER 

This paper was prepared as an account of work sponsored 

by an agency of the United States Government.  Neither the 

United States Government nor any agency thereof, nor any of 

their employees, makes any warranty, express or implied, or 

assumes any legal liability or responsibility for the accuracy, 

completeness, or usefulness of any information, apparatus, 

product, or process disclosed, or represents that its use would 

not infringe privately owned rights.  Reference herein to any 

specific commercial product, process, or service by trade name, 

trademark, manufacturer, or otherwise does not necessarily 

constitute or imply its endorsement, recommendation, or 

favoring by the United States Government or any agency 

thereof.  The views and opinions of authors expressed herein do 

not necessarily state or reflect those of the United States 

Government or any agency thereof. 
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