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Abstract
Attaining the proper balance between underfitting
and overfitting is one of the central challenges in
machine learning. It has been approached mostly
by deriving bounds on generalization risks of learn-
ing algorithms. Such bounds are, however, rarely
controllable. In this study, a novel bias-variance
balancing objective function is introduced in or-
der to improve generalization performance. By uti-
lizing distance correlation, this objective function
is able to indirectly control a stability-based upper
bound on a model’s expected true risk. In addition,
the Generalization-Aware Collaborative Ensemble
Regressor (GLACER) is developed, a model that
bags a crowd of structured regression models, while
allowing them to collaborate in a fashion that mini-
mizes the proposed objective function. The experi-
mental results on both synthetic and real-world data
indicate that such an objective enhances the overall
model’s predictive performance. When compared
against a broad range of both traditional and struc-
tured regression models GLACER was ∼10-56%
and ∼49-99% more accurate for the task of pre-
dicting housing prices and hospital readmissions,
respectively.

1 Introduction
One of the fundamental challenges in machine learning is
to develop models that can learn from empirical evidence
and make accurate predictions. Such a challenge requires
a design of learning algorithms capable of producing hy-
potheses (models) that 1) assimilate the empirical evidence,
and 2) generalize well to unobserved data. The former is
controlled by the notion of empirical risk Remp (training
error), while the latter depends on the generalization risk
Rgen = |Remp − Rtrue| which determines whether Remp
is a valid estimate of the true unknown risk Rtrue (test er-
ror). A situation of high empirical risk Remp and low gen-
eralization risk Rgen causes underfitting, characterized by
the presence of high bias. On the other hand, the converse
leads to overfitting indicating high variance. Therefore, in
mathematical terms, the problem comes down to minimiz-
ing Remp, while maintaining low Rgen. Although, mini-

mizing the empirical risk can be easily attained since it is
“measurable” from the observed data, we are not aware of
the conditions under which a learning algorithm generalizes.
The generalization risk is often impossible to determine since
the true risk is unknown. However, there is a broad range
of established upper bounds on Rgen for both deterministic
and randomized learning algorithms, and in both regression
and classification cases. Initially introduced by Vapnik [Vap-
nik, 1999], generalization risk bounds have been derived on
the basis of uniform convergence [Vapnik, 1999], algorithmic
stability [Elisseeff et al., 2003; Elisseeff et al., 2005], generic
chaining [Audibert and Bousquet, 2007; Talagrand, 1996],
the PAC-Bayesian framework [Audibert and Bousquet, 2007;
McAllester, 2003], Rademacher and Gaussian complexi-
ties [Bartlett and Mendelson, 2002], and robustness-based
analysis [Xu and Mannor, 2012]. Some of these bounds are
derived on the hypotheses selected by learning algorithms,
while others bound the risks of the learning algorithms. For
instance, the Vapnik-Chervonenkis (VC) theory [Blumer et
al., 1989] provides generalization bounds on hypotheses’
risks, while stability bounds [Bousquet and Elisseeff, 2002;
Kutin and Niyogi, 2002; Poggio et al., 2004] are derived on
learning algorithms’ risks. For the theoretical justification in
this study, we will focus on the latter.

Inspired by this insight, we designed a bias-variance bal-
ancing objective function that aims at tightening an algorith-
mic stability-based upper bound on the expected true risk
in order to yield improved predictive performance. It uti-
lizes distance correlation [Székely et al., 2007; Székely et al.,
2009], a measure for statistical dependence, to control mutual
stability between a model’s loss w.r.t. given data and the data
itself. This enables learning from empirical evidence, while
at the same time enhancing the overall model’s generalization
performance. Since ensemble construction is a natural way
of achieving greater generalization performance, we present
the GeneraLization-Aware Collaborative Ensemble Regres-
sor (GLACER), a collaborative ensemble-based model for
structured regression that optimizes a generalization-aware
objective function. GLACER bags multiple graphical mod-
els, namely Gaussian CRFs, and allows them to interact by
exchanging examples in a way that minimizes the proposed
objective function. Here, we utilize the idea of exchanging
examples between ensemble components in a structured re-
gression setting. This decreases GLACER’s empirical risk
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and at the same time accounts for its generalization risk by
tightening an upper bound of its expected true risk.

GLACER has been assessed on both synthetic and real-
world data, and compared against both traditional and struc-
tured regression models. In the conducted experiments,
GLACER’s predictions have shown to be stable, yielding sta-
tistically significant improvements in average MSE.

GLACER’s underlying framework can be viewed as a col-
laborative ensemble that aims to minimize a generalization
error bound. Thus, it can be extended beyond regression by
replacing its base components by any kind of learning models
(e.g. binary classification models [Arsov et al., 2017]).

The main contributions of this work are summarized as fol-
lows:
1) Theory and calculation of a stability-based generalization
error bound are bridged by leveraging the distance correla-
tion measure;
2) A bias-variance balancing objective function that takes ad-
vantage of distance correlation is designed to indirectly con-
trol the mutual stability between a regression model’s loss on
a dataset and the dataset itself, and thus to effectively address
the trade-off between underfitting and overfitting;
3) A collaborative ensemble regressor was developed whose
components are allowed to interact through a novel example-
exchange-driven optimization in order to optimize the pro-
posed objective.

2 Problem Formulation
LetZ = X×Y be an observation space of input-output pairs,
where X ∈ Rd and Y ∈ R denote the input and output space,
respectively. Further, let D = {z1 = (x1, y1), . . . , zN =
(xN , yN )} ∈ ZN be a training set of N input-output pairs
(xi, yi) referred to as examples, where ZN represents the
space of all training sets of size N . The task is the pre-
diction of an unobserved vector y′ = [y′1, . . . , y

′
N ′ ]
> of

real-valued outputs (targets), given their corresponding inputs
X′ = [x′1, . . . ,x

′
N ′ ]
>.

3 Main Theoretical Insight
The proposed objective function optimized by GLACER (in-
troduced later in Section 4.2) relies on the following insights:
• An upper bound, derived on the expected true risk R̂true,
i.e. the true risk of any learning algorithm L:

R̂true(L) ≤ ED[Eh|D[Remp(h,D)]] + 1− S(`(·, h), ztrn),
(1)

where Remp(h,D) denotes the empirical risk of a hypothesis
h (inferred by L), while S(`(·, h), ztrn) represents the mutual
stability between the loss of h and a random training example
ztrn.
• A proposed bias-variance balancing objective function de-
signed to minimize the upper bound in Eq. (1):

Robj(h,D) =
√
Remp(h,D)2 + dCorr(`(·, h), ztrn)2,

(2)
where Remp(h,D) is the empirical risk of h and
dCorr(`(·, h), ztrn) is the distance correlation, a measure of
statistical dependence between `(·, h) and ztrn.
Next, we discuss the derivations of Eqs. (1) and (2) in detail.

3.1 Theoretical Background
The main goal is to address the fundamental learning problem
of balancing between the notions of underfitting and overfit-
ting. The former is controlled by the empirical risk Remp,
while maintaining a low true risk Rtrue assists in avoiding
the latter. A convenient way to take both into account is by
analyzing their absolute difference, i.e. the generalization risk
Rgen = |Remp − Rtrue|. However, a low Rgen guarantees
similar risks, leaving open the possibility of similar but still
high risks. Therefore, we consider maintaining a low empiri-
cal risk Remp while minimizing the risk difference Rgen.

The empirical risk Remp can be further minimized since it
is “measurable”, i.e. its value can be calculated with respect
to a particular loss function using the observed data. How-
ever, the true risk Rtrue is unknown. Therefore, the risk dif-
ference Rgen cannot be directly calculated. Instead, one can
try to minimize the value of the upper bound of Rgen. There
is a broad range of upper bounds onRgen, but their values are
often not directly controllable. In this work, we focus on the
bounds of the expected generalization risk R̂gen which were
recently established and are based on the notion of stability.

Here, we define the generalization risk of a learning al-
gorithm L : ∪∞N=1ZN → H, or simply the expected gen-
eralization risk R̂gen. The algorithm L selects a hypothesis
h : ∪∞N=1ZN → Y from a hypothesis spaceH using a subset
of the whole observation space. Given a bounded parametric
loss function `(·, h) : Z → [0, 1], the generalization risk of L
w.r.t. `(·, h) is defined as the absolute difference between the
empirical and true risks of L, i.e.

R̂gen(L) = |R̂emp(L)− R̂true(L)|.

The empirical and true risks of L are defined as the expected
empirical and expected true risks of h, i.e.

R̂emp(L) = ED[Eh|D[Remp(h,D)]];

R̂true(L) = ED[Eh|D[Rtrue(h)]],
(3)

where Remp(h,D) = 1
N

∑N
i=1 `(zi, h); Rtrue(h) =

Ez∼P(z)[`(z, h)]. We next present a theorem that outlines a
stability-based bound of R̂gen which the proposed objective
function is based on.

Theorem 1 ([Alabdulmohsin, 2017; Alabdulmohsin, 2015])
For any learning algorithm L : ∪∞N=1ZN → H, algorithmic
stability is both a necessary and sufficient condition for
uniform generalization. Moreover,

R̂gen = |R̂true(L)− R̂emp(L)| ≤ 1− S(`(·, h), ztrn), (4)

where S(`(·, h), ztrn) denotes the mutual stability between
`(·, h) and ztrn which essentially represents the overlap be-
tween their probability distributions. For the complete proof
of the theorem, just follow the reference to its original source.

Next, we justify our choice of the upper bound in Eq. (4)
by providing the main two reasons for it:
• In [Alabdulmohsin, 2015] it has been proven that uniform
generalization is essentially equivalent to algorithmic stabil-
ity. Since algorithmic stability is defined by the mutual sta-
bility S(`(·, h), ztrn) (on which the bound Eq. (4) is based),
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it follows that mutual stability is also connected to uniform
generalization. In other words, one needs to be able to con-
trol mutual stability in order to improve generalization per-
formance.
• The value of the chosen bound still cannot be directly min-
imized, but at least it can be indirectly controlled, unlike most
of the bounds on Rgen.
We focus solely on 1 − S(`(·, h), ztrn) as it is the tightest
bound presented in [Alabdulmohsin, 2015, Trm. 1].

3.2 Bias-Variance Balancing Objective Function
The ultimate goal is to minimize both R̂emp and the upper
bound of R̂gen at the same time, which can be achieved by
tightening the upper bound of R̂true. Expressing the chosen
bound (Eq. (4)) in terms of R̂true yields

R̂true(L) ≤ R̂emp(L) + 1− S(`(·, h), ztrn). (5)
According to Eq. (3), the upper bound in Eq. (5) can be
rewritten as
R̂true(L) ≤ ED[Eh|D[Remp(h,D)]] + 1− S(`(·, h), ztrn).

(6)
To control the above upper bound, we define the following
objective function:

Robj(h,D) =
√
Remp(h,D)2 + dCorr(`(·, h), ztrn)2.

(7)
It is clear that the first term in Eq. (7), which minimizes
the empirical error Remp(h,D), will induce a decrease of
R̂emp(L). The second term dCorr(`(·, h), ztrn), defined
later in Eq. (8), measures the statistical dependence between
the loss `(·, h) and a random training example ztrn. Minimiz-
ing dCorr tightens the upper bound of R̂gen.

In the following section, we provide details on the con-
nection between the notions of mutual stability and statistical
dependence, and further explain how distance correlation can
indirectly control the stability term S(`(·, h), ztrn) in Eq. (6).

3.3 How Statistical Dependence Controls
Stability?

From an information-theoretic perspective, as the variational
information I(`(·, h), ztrn) = 1−S(`(·, h), ztrn) decreases,
the empirical loss `(zi, h) becomes more representative to the
true loss `(z, h), z ∼ P(z). In terms of stability theory, this
means that the learning algorithm that selected h is becoming
more stable, since a high value of S(`(·, h), ztrn) indicates
that the probability distribution of `(·, h) is not perturbed
by a random training example ztrn. Perfect mutual stability
S(`(·, h), ztrn) = 1 is achieved when I(`(·, h), ztrn) = 0,
i.e. when `(·, h) and ztrn are statistically independent. There-
fore, we account for the dependence between them by intro-
ducing the second term in our objective function, which relies
on the distance correlation measure between `(·, h) and ztrn.
Thinking of `(·, h) and ztrn as random vectors L and Z whose
observations are `(z1, h), . . . , `(zN , h) and z1, . . . , zN , re-
spectively, the (empirical) distance correlation between them
is defined as the square root of

dCorr2N (L,Z) =
dCov2N (L,Z)√

dCov2N (L,L) dCov2N (Z,Z)
, (8)

when dCov2N (L,L)dCov2N (Z,Z) > 0. Otherwise,
dCorr2N (L,Z) = 0. In Eq. (8), the squared sample distance
covariance is calculated as

dCov2N (L,Z) =
1

N2

N∑
i=1

N∑
j=1

(dLij − dLi· − dL·j + dL·· )

(dZij − dZi· − dZ·j + dZ·· ).

Here, di· = 1
N

∑N
j=1 dij , d·j = 1

N

∑N
i=1 dij , and d·· =

1
N2

∑N
i=1

∑N
j=1 dij , where dij is the euclidean distance be-

tween the i-th and j-th observations of the random vector for
which it is being calculated.

Distance correlation generalizes the idea of correlation be-
tween L and Z, while preserving the following properties:

(i) dCorr(L,Z) is defined for two random vectors of arbi-
trary, not necessarily equal dimensions;

(ii) dCorr(L,Z) = 0 iff L and Z are independent;
(iii) 0 ≤ dCorr(L,Z) ≤ 1.
From (ii), it is clear that minimizing dCorr(L,Z) in the ob-
jective’s second term may cause a positive change in the mu-
tual stability S(`(·, h), ztrn). The assumption here is that, in
the idealistic case, when the value of dCorr(L,Z) reaches
zero, L and Z are independent and 1 − S(`(·, h), ztrn) van-
ishes in the upper bound (Eq. (6)). A direct relation between
distance correlation and information-theoretic mutual stabil-
ity is not claimed, but rather, in this case it is inspired by
(indirectly related to) the concept of mutual stability.

4 Methodology
4.1 Preliminaries: Gaussian CRF
A Continuous Conditional Random Field (CCRF) [Qin
et al., 2009] models the conditional distribution of
the outputs y, given all inputs X, as P (y|X) =
1
Z exp

{
−α

∑N
i=1 (yi − φ(xi))

2 − β
∑
i∼j Sij (yi − yj)2

}
,

where [α, β]> is a parameter vector, while Z is a normaliza-
tion constant, calculated as an integral over y of the term in
the exponent. The first term in the exponent models the rele-
vance of an “unstructured predictor” φ by assigning a weight
α. In the second term, Sij is extracted by a user-defined
similarity measure s(xi,xj) assuming that if the two inputs
xi and xj are similar, their corresponding outputs yi and yj
are also similar. The similarity matrix S = [Sij ]N×N can be
seen as an adjacency matrix of an undirected weighted graph
whose relevance is determined by the β parameter.

Structured Learning. Since the constituents of the expo-
nent in P (y|X) are defined as quadratic functions in terms of
y, the conditional probability can be transposed directly onto
a multivariate Gaussian distribution, hence the CCRF be-
comes a Gaussian CRF (GCRF) [Radosavljevic et al., 2010].
Learning a GCRF boils down to determining the precision
matrix Q = αI + βL, where L is the Laplacian of S and I is
an identity matrix. Note that Q is used to obtain an explicit
expression for the inverse covariance matrix Σ−1 = 2Q. The
learning is governed by a convex optimization that strives to
determine [α̂, β̂]> = arg maxα,β log (P (y|X;α, β)).
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Inference. Since the model relies on a multivariate Gaus-
sian distribution, the estimate of a target vector y′ is the
distribution’s expected value, for which P (y′|X′) is maxi-
mized. Hence, the inference task comes down to calculating
µ = Σb = αQ−1[φ(x′1), . . . , φ(x′N ′)]

>.

4.2 GeneraLization-Aware Collaborative
Ensemble Regressor (GLACER)

The proposed model, GLACER, represents a collaborative
ensemble model for structured regression that strives to avoid
both underfitting and overfitting by optimizing the proposed
objective function (Eq. (7)). Since bagging [Andonova et
al., 2002] combined with boosting [Friedman, 2001] can be
very effective for achieving both variance and bias reduc-
tion [Büchlmann and Yu, 2002], GLACER sub-bags multiple
GCRFs, each utilizing an LSBoost model as an unstructured
predictor. Moreover, it employs collaboration between its
constituents by allowing them to interactively exchange ex-
amples during training. This example-exchange-guided opti-
mization aims to minimize Eq. (7), thus enhancing the overall
model’s predictive performance. GLACER’s training proce-
dure is outlined in Algorithm 1.

Ensemble Construction (Lines 1-5 in Algorithm 1). In
order to employ multiple “local” GCRF models to discover
different data substructures, a training set D and its cor-
responding similarity matrix S are sampled uniformly M
times without replacement, thus generating M data subsets
D1, . . . ,DM of size ηN , where η ∈ (0, 1), and correspond-
ing M similarity submatrices S1, . . . ,SM . Then, each Dm is
used to train a single GCRF component FDm characterized
by αm and βm, ∀m = 1, . . . ,M . Since it is obvious that Sm

is passed as an input to the m-th GCRF component together
with Dm, Sm is left out from the subscript of FDm for sim-
plicity of notation. The final predictions for the output values
are made by combining all GCRF components’ outcomes in
a subbagging fashion: ΦD(X,S) = 1

M

∑M
m=1 FDm(X,S).

Next, we proceed by presenting a general interactive op-
timization procedure that determines which examples should
fall in which subsets, that is, modifyDm and Sm for the com-
ponents FDm so as to decrease the objective function Robj .

Step I (Lines 7-17 in Algorithm 1). In the first step of
the optimization, candidate (potential) swaps between GCRF
components are made; and the decrease in the objective func-
tion is calculated after each of them occurs. Examples are
tentatively assorted for exchange, and selection is determined
by evaluating the losses of each GCRF component with re-
spect to all examples in its subset. When evaluating the loss
of a regression model, the coefficient of determination R2 is
often used. The range of R2 values is (−∞, 1]. Since there
is a constraint related to the loss function which should fall
between 0 and 1, we define a loss function that measures how
well a GCRF component FDm fits an example z as follows,

`(z, FDm) = 1− er(z,FDm )−1

= 1− exp

{(
1

N
− (y − FDm(x))2

V ar(ym)

)
− 1

}
, z ∈ Dm.

Thereafter, the worst-fit example zm∗ of the m-
th GCRF component is determined by zm∗ =

arg maxz∈Dm `(FDm , z), ∀m = 1, . . . ,M. In order
to improve the predictive performance of a single GCRF
component, the worst-fit example from its training subset
is exchanged with another worst-fit example from another
GCRF component’s subset. To avoid duplicating exam-
ples and compromising the subset size equality among
the components, a pair of GCRF components is allowed
to exchange examples only if each of them receives an
example from the other one that is not present in its subset,
and vice versa. Therefore, after an example exchange
occurs, ΦD will still represent a valid subbagging en-
semble. As per this constraint, the max-loss examples
are exchanged between a pair of GCRF components as
(Djp,Dkp) =

(
Dj \ {zj∗} ∪ {zk∗},Dk \ {zk∗} ∪ {z

j
∗}
)
, if

zk∗ /∈ Dj ∧ z
j
∗ /∈ Dk, where Djp and Dkp denote the modified

versions of Dj and Dk, respectively. Otherwise, the original
subsets remain the same, i.e. (Djp,Dkp) = (Dj ,Dk).

The exchange of zj∗ and zk∗ is referred to as one “candi-
date swap”. It should be noted that, along with the temporary
update of the j-th and k-th subsets, their corresponding simi-
larity matrices Sj and Sk are also updated accordingly. After
performing this candidate swap, the outcome of the overall
model for arbitrary X and S is

ΦD(j,k)(X,S)

=
1

M

(
FDj

p
(X,S) + FDk

p
(X,S) +

M∑
m=1
m 6=j,k

FDm(X,S)
)
.

To quantify the contribution of each swap, the difference be-
tween the values of the objective function Robj (Eq. (7)), be-
fore and after a swap occurs, is calculated:

∆jk = Robj(ΦD,D)−Robj(ΦD(j,k) ,D).

The value of ∆jk essentially represents the improvement in
the objective function value brought by the collaboration be-
tween the j-th and k-th GCRF components. This measure is
calculated for all pairs of GCRF components.

Step II (Lines 18-20 in Algorithm 1). Once all tentative
candidate swaps are examined, examples are exchanged be-
tween those two GCRF components that foster the highest
decrease in the objective function.

Convergence (Line 6 in Algorithm 1). The aforedescribed
steps constitute one iteration of GLACER’s training proce-
dure and all of them are repeated until no additional exchange
between any pair of GCRF components can further decrease
the objective function.

Monotonicity of Robj . Let us assume that τ is the current
optimization iteration. If convergence is not the case at this it-
eration, then there must exist at least one pair (j, k) for which
∆jk > 0. Henceforth, an exchange between a pair of GCRF
components must occur, and the fact that ∆jk > 0 only if the
exchange fosters an improvement in the value of Robj guar-
antees that Robj will monotonically decrease as τ increments
by one.
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Algorithm 1 GLACER

Input: Training set D, #components M ,
sub-sampling fraction η, similarity matrix S

Procedure:
1: for m = 1, . . . ,M do
2: (Dm,Sm)← Sub-sample(D,S, η)
3: φ← Train LSBoost(Dm)
4: FDm ← Train GCRF (Dm,Sm, [φ(x)]>x∈Dm)

5: Construct ΦD = 1/M
∑M
m=1 FDm(X,S)

6: while at least one ∆jk > 0 do
7: for m = 1, . . . ,M do
8: zm∗ = arg maxz∈Dm `(FDm , z)

9: for all unique pairs (j, k) ∈ [1,M ]2 do
10: if zk∗ /∈ Dj ∧ z

j
∗ /∈ Dk then

11: Calculate the objective Robj(ΦD,D)
12: Swap examples between the Dj and Dk
13: Retrain FDj and FDk

14: Construct a modified ensemble ΦD(j,k)

15: Calculate Robj(ΦD(j,k) ,D)
16: ∆jk = Robj(ΦD,D)−Robj(ΦD(j,k) ,D)

17: Put zj∗ and zk∗ in their original subsets
18: Find the optimal pair (j∗, k∗) = arg max(j,k) ∆jk

19: Permanently modify subsets Dj∗ and Dk∗

20: In ΦD: replace FDj by FDj∗ , and FDk by FDk∗

Output: Return ΦD

5 Experiments
5.1 Baselines
The baselines considered in this study are listed as follows:
• MLR: Multiple Linear Regression model.
• NN: Feed-Forward Neural Network with 3 layers.
• SVM: SVM regression model with an RBF kernel.
• SUBBAG: Variation of bagging that considers sampling at
random, but without replacement to generate training subsets.
• RF: Random Forest ensemble that performs random sam-
pling of examples to generate subsets, followed by a random
feature selection within each subset.
• LSB: Gradient-boosting ensemble for additive expansions
based on the least-squares fitting criterion.
• (C/NC)NL: Network Lasso, a structured regression model
capable of simultaneous clustering and optimization on
graphs. Both its convex (C)NL and non-convex (NC)NL vari-
ants were trained with λ = 5, same as in [Hallac et al., 2015].

5.2 Setup
In all conducted experiments, the ensemble-based baselines
(SUBBAG, RF, LSB) and GLACER were run with M com-
ponents, while the same sub-sampling fraction η was used to
construct training subsets for both SUBBAG and GLACER.
Moreover, each baseline other than NL (which is already
a structured approach) was run in both traditional (unstruc-
tured) and structured mode. A baseline’s structured variant is
obtained by passing it to a GCRF as its unstructured predic-
tor. Structured variants are distinguished from unstructured
ones by the “S-” at the beginning of their names (e.g. S-MLR

denotes a structured MLR). Mean squared error (MSE) was
calculated for all models. The average testing MSEs are re-
ported, along with their corresponding two-sided confidence
intervals at 90% confidence level.

5.3 Experiments on Synthetic Data
Data Generation. The synthetic data was generated such
that it holds a certain structure ([Pavlovski et al., 2017] used
a similar generation process). First, N = 3000 examples
xi ∈ Rd (d = 5) were generated such that each attribute is
normally distributed according to a standard normal distribu-
tion. Thereafter, outputs were created as parameterized poly-
nomials with uniformly distributed parameters. Normally
distributed noise was applied to these outputs, yielding

∼
y.

The structure among the examples was created on the basis of
an Erdős-Rényi random graphG, each node corresponding to
one example. Accordingly, the between-example similarities
were calculated as Sij = e−|

∼
yi−

∼
yj | in case an edge between

i and j exists in G. Otherwise, Sij was set to zero. Finally,
GCRF was utilized in a generative manner in order to infer
the final outputs as y = α(αI + βL)

−1∼
y, where α = 1 and

β = 5 were chosen, thus making the structure more signifi-
cant than the input-output relationship within the data.

Parameter Analysis. The predictive performance of
GLACER was analyzed under different sets of parameters.
Using the aforedescribed data generation procedure, 10 dif-
ferent training and independent test sets were generated.
GLACER was then run on each train/test pair with M =
5, 10, 30 components, while for each value of M the sub-
sampling fraction η varied within {0.3, 0.5, 0.7}. The test-
ing MSEs regarding all these different parameter sets are left
out due to lack of space. As expected, GLACER stabilizes
and achieves greater performance as M increases. When
M = 10, GLACER already shows good generalization per-
formance, and η does not seem to play a crucial role. There-
fore, in the following experiments we chose to run GLACER
with M = 10 and set η to 0.3 for efficiency.

Generalization Capability. Different fractions of data
(10%, 50% and the entire training set) were used to further
investigate GLACER’s generalization performance. For each
training data size, the average MSE over 10 repetitions was
calculated for GLACER and all baselines. As shown in Table
1, GLACER yields the lowest MSEs under all three training
data sizes. Although all models’ MSEs decrease with the in-
creased size of training data, GLACER sustains stable predic-
tions when only 50% training data is available, which clearly
indicates the generalization performance of GLACER.

Influence of Distance Correlation. To evaluate the in-
fluence of distance correlation in the objective function,
GLACER’s generalization performance was evaluated on dif-
ferent fractions of the same synthetic data in two cases: (1)
when the dCorr term is excluded fromRobj ; (2) when dCorr
is incorporated in Robj . According to Table 2, GLACER
manifests lower average MSEs when dCorr is used in Robj .
This is consistent as the training data increases. Besides,
without dCorr, the average MSE worsens once the train-
ing set fraction increases from 50% to 100% which might
be an indication of overfitting. On the contrary, incorporating
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Model
Frac. 10% 50% 100%

MLR 2.91 ± 0.25 2.33 ± 0.05 2.40 ± 0.09
S-MLR 2.23 ± 0.86 1.51 ± 0.05 1.64 ± 0.06
NN 2.79 ± 1.32 1.42 ± 0.21 1.18 ± 0.14
S-NN 3.31 ± 2.25 0.95 ± 0.18 0.76 ± 0.09
SVM 3.60 ± 0.12 2.39 ± 0.12 2.46 ± 0.10
S-SVM 3.60 ± 0.10 1.77 ± 0.12 1.89 ± 0.10
SUBBAG 4.97 ± 0.38 1.25 ± 0.01 0.86 ± 0.03
S-SUBBAG 5.57 ± 0.45 0.91 ± 0.03 0.63 ± 0.04
RF 5.33 ± 0.48 1.63 ± 0.05 1.09 ± 0.04
S-RF 7.32 ± 0.55 1.35 ± 0.03 0.94 ± 0.04
LSB 3.47 ± 0.35 2.79 ± 0.05 2.65 ± 0.05
S-LSB 2.00 ± 0.20 0.90 ± 0.02 1.22 ± 0.11
(C)NL 2.58 ± 0.48 1.20 ± 0.04 0.64 ± 0.04
(NC)NL 2.53 ± 0.41 1.32 ± 0.05 0.97 ± 0.05
GLACER 0.72 ± 0.11 0.25 ± 0.01 0.25 ± 0.004

Table 1: Average testing MSE when 10%, 50%, and all training data
is supplied.

Frac.
Robj Without dCorr With dCorr

10% 0.740 ± 0.112 0.716 ± 0.112
50% 0.435 ± 0.007 0.245 ± 0.006
100% 0.529 ± 0.008 0.252 ± 0.004

Table 2: Average testing MSE, obtained before and after using
dCorr within Robj .

dCorr in Robj prevents from large increases in MSE. This
indicates that dCorr plays an important role in the model’s
generalization performance.

5.4 Real-World Datasets
Sacramento Real-Estate. A collection of 985 real estate
transactions were observed in the Greater Sacramento area,
California, made over a period of one week in May 2008.
Each example refers to a house sale record that contains in-
formation about the number of bedrooms and bathrooms, the
house area in square feet, and its location in terms of latitude
and longitude. The regression task is to predict houses’ prices
based on their characteristics. Since some attribute values
are missing, we used a dataset version that was pre-processed
by [Hallac et al., 2015]. An undirected similarity graph was
constructed for each training and test set by coupling each
house with its 5 nearest houses and the other way around.
A weight e−distij was assigned to each existing edge (i, j)
based on the geospatial distance between houses i and j.

Medicare Readmissions1. This data consists of 1000 hos-
pital records referring to hospitals that have more than ∼150
readmissions. Each record contains information about the
number of discharges, the excess readmission ratio, as well as
the estimated and expected readmission rates. Given a hospi-
tal record, the goal is to predict the number of readmissions
at the hospital. The structure among the hospital records was

1https://data.medicare.gov/data/hospital-compare

Model Sacramento Medicare
MLR 0.507 ± 0.025 1755.708 ± 616.119
S-MLR 0.465 ± 0.024 525.551 ± 196.065
NN 0.516 ± 0.026 2037.421 ± 1199.805
S-NN 0.463 ± 0.023 1618.547 ± 1192.462
SVM 0.515 ± 0.031 1359.342 ± 697.91
S-SVM 0.479 ± 0.034 504.076 ± 221.228
SUBBAG 0.304 ± 0.017 441.524 ± 101.065
S-SUBBAG 0.262 ± 0.015 234.505 ± 74.378
RF 0.283 ± 0.02 508.294 ± 110.988
S-RF 0.249 ± 0.015 247.406 ± 35.814
LSB 0.288 ± 0.015 595.289 ± 136.174
S-LSB 0.25 ± 0.017 182.006 ± 24.919
(C)NL 0.368 ± 0.013 5012.614 ± 768.945
(NC)NL 0.38 ± 0.017 5012.614 ± 768.945
GLACER 0.225 ± 0.005 73.183 ± 9.032

Table 3: Average testing MSE obtained on real-world datasets.

constructed by calculating distij as the Manhattan distance
between the attribute values of records i and j, and assigning
edge weights in the same way as for the Sacramento dataset.

Results and Discussion. The Sacramento Real-Estate
dataset was split into a training set of 785 house transac-
tions and a test set of 200 transactions (same as in [Hallac
et al., 2015]). As for Medicare Readmissions, half of the
data was randomly sampled and used for training, while the
other half was used for evaluation. The average testing MSEs
obtained on both datasets are summarized in Table 3. From
these results, it is evident that GLACER outperforms its alter-
natives by significant margins (the corresponding p-values are
smaller than 0.01 for Sacramento, and 0.021 for Medicare).
For instance, GLACER is 38.86% (p-value = 5.6 × 10−9)
and 40.79% (p-value = 2.3 × 10−8) more accurate than the
convex and non-convex NL on the Sacramento Real-Estate
dataset, respectively. GLACER also manifests a lower av-
erage MSE than its building blocks, namely SUBBAG and
S-LSB on both datasets. As for all other baselines, it obtains
substantial MSE decreases on the Sacramento dataset rang-
ing from 9.64% to 56.4%, and from 49.32% up to 96.41%
on the Medicare dataset, thus demonstrating a considerable
generalization capability.

In addition, GLACER is more stable compared to alterna-
tives, as it has the tightest confidence interval for its average
MSE. A possible explanation behind this would be the na-
ture of GLACER’s stability-encouraging objective function.
Lastly, there is no overlap between the confidence interval
for GLACER’s average MSE and any other model’s inter-
val. Henceforth, GLACER’s improvements are statistically
significant.

6 Conclusion
In this work, we bridged theory and calculation of a stability-
based generalization error bound by leveraging the distance
correlation measure and proposed a bias-variance balancing
objective function which utilizes the properties of this mea-
sure to address the trade-off between underfitting and over-
fitting. In addition, we introduced GLACER, a model for
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structured regression which optimizes the proposed objec-
tive function through an example-exchange-driven optimiza-
tion. GLACER was assessed on multiple datasets, on which it
manifested stable predictions and significantly outperformed
a broad range of traditional and structured regression models.
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