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Generating highly accurate 
prediction hypotheses through 
collaborative ensemble learning
Nino Arsov1,*, Martin Pavlovski1,*, Lasko Basnarkov1,2 & Ljupco Kocarev1,2,3

Ensemble generation is a natural and convenient way of achieving better generalization performance 
of learning algorithms by gathering their predictive capabilities. Here, we nurture the idea of ensemble-
based learning by combining bagging and boosting for the purpose of binary classification. Since the 
former improves stability through variance reduction, while the latter ameliorates overfitting, the 
outcome of a multi-model that combines both strives toward a comprehensive net-balancing of the 
bias-variance trade-off. To further improve this, we alter the bagged-boosting scheme by introducing 
collaboration between the multi-model’s constituent learners at various levels. This novel stability-
guided classification scheme is delivered in two flavours: during or after the boosting process. Applied 
among a crowd of Gentle Boost ensembles, the ability of the two suggested algorithms to generalize is 
inspected by comparing them against Subbagging and Gentle Boost on various real-world datasets. In 
both cases, our models obtained a 40% generalization error decrease. But their true ability to capture 
details in data was revealed through their application for protein detection in texture analysis of gel 
electrophoresis images. They achieve improved performance of approximately 0.9773 AUROC when 
compared to the AUROC of 0.9574 obtained by an SVM based on recursive feature elimination.

Machine learning has been transforming the world by improving our understanding of artificial intelligence1–3 
and by providing solutions for some outstanding problems such as multi-modal parcellation of human cerebral 
cortex4 and materials discovery5. A learning algorithm generalizes if, given access to some training set, it returns 
a hypothesis whose empirical error is close to its true error6. There are three main approaches to institute general-
ization guarantees: (1) by providing bounds of various notions of functional space capacity- most notably, using 
the VC-dimension7; (2) by establishing connections between the stability of a learning algorithm and its ability 
to generalize8–10, and (3) by considering the compression-scheme method11. Here we describe an effective way 
to fuse boosting and bagging ensembles in which algorithmic stability directs a novel process of collaboration 
between the resulting ensemble’s weak/strong components that outperforms best-case boosting/bagging for a 
broad range of applications and under a variety of scenarios. The algorithms were assessed on various realistic 
datasets, showing improved performance in all cases, on average of slightly below 40%, compared to the best-case 
boosting/bagging counterparts. Furthermore, in a medical setting for protein detection in texture analysis of 
gel electrophoresis images12, our approach exhibits surpassing performance of approximately 0.9773 area under 
the ROC curve (AUROC), compared to three machine-learning feature selection approaches: Multiple Kernel 
Learning, Recursive Feature Elimination with different classifiers and a Genetic Algorithm-based approach with 
Support Vector Machines (SVMs) as decision functions, having 0.9574 or less AUROCs. Moreover, when col-
laboration is effectuated with weak components, our algorithm runs up to more than five times faster than the 
underlying boosting algorithm. We anticipate our approach to be a starting point for more sophisticated models 
for generating stability-guided collaborative learning approaches, not necessarily limited to boosting.

Ensemble techniques13–15 show improved accuracy of predictive analytics and data mining applications. In a 
typical ensemble method, the base inducers and diversity generators are responsible for generating diverse clas-
sifiers which represent the generalized relationship between the input and the target attributes. A strong classifier 
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can be generated in probably approximately correct sense by combining weak classifiers through a procedure 
called boosting16. Boosting was the predecessor of the AdaBoost family of algorithms - which arguably became 
one of the most popular machine learning algorithms in recent times17,18. Bootstrap aggregating19, also called bag-
ging, is a machine learning ensemble meta-algorithm designed to enhance the stability and accuracy of machine 
learning algorithms by reducing variance and improving overfitting. The long list of ensemble systems includes 
composite classifier systems20, mixture of experts21,22, stacked generalization23, combination of multiple classi-
fiers24–26, dynamic classifier selection27, classifier fusion28,29, and classifier ensembles, among many others. For 
recent reviews on ensemble approaches for regression and classification we refer the reader to refs 30 and 31.

The basic idea of the concept of boosting is to boost the accuracy of a weak classifying tool by combining vari-
ous instances into more accurate predictions. This general concept was later adapted to the field of statistical mod-
elling, resulting into powerful methods for developing statistical models called statistical boosting algorithms: 
gradient boosting32 and likelihood-based boosting33. The link between statistical modelling and the original 
notion of boosting as a machine learning technique was established by Friedman et al.34. Later, Bühlmann and 
Yu35 used boosting algorithms to fit generalized additive regression models36. Boosting algorithms can be mod-
ified such that they contain an intrinsic mechanism for variable selection and model choice (component-wise 
learning35). Recently, Mayr et al.37 provide comprehensive overviews on the evolution of boosting algorithms, as 
well as on extending statistical boosting.

Algorithmic stability describes how a machine learning algorithm performs to small changes in the training 
data. In the context of modern learning theory, the use of stability can be traced back at least to the work of Rogers 
and Wagner38. The authors noted that the sensitivity of a learning algorithm with regard to small perturbations 
in the data controls the variance of the leave-one-out estimate and used this observation to obtain generalization 
bounds (w.r.t. the leave-one-out estimate) for the k-nearest neighbors algorithm. Kearns and Ron39 showed that 
an algorithm operating on a hypothesis class with finite VC dimension is also stable (under a certain definition 
of stability). Bousquet and Elisseeff8 introduced uniform stability and showed that it is a sufficient condition 
for learnability, satisfied by popular learning algorithms such as regularized linear classifiers and regressors in 
Hilbert spaces (including several variants of SVM). Shalev-Shwartz et al.10 considered the General Learning 
Setting (introduced by Vapnik) and showed that, in this setting, there are non-trivial learning problems where 
uniform convergence does not hold, empirical risk minimization fails, and yet they are learnable using alternative 
mechanisms. They identified stability as the key necessary and sufficient condition for learnability. Recently, algo-
rithmic stability has been also connected to differential privacy40, (robust and perfect) generalization6, adaptive 
data analysis41, adaptive learning and compression schemes42.

In this paper we suggest a novel method for binary classification in which collaboration between (weak or 
strong components of) ensembles is established. Two algorithms for collaboration are suggested for which it 
has been proven that they are algorithmically stable. The algorithms were tested on various datasets, showing 
improved performance in both reducing the error rates and reducing the computation time.

Methods
Here we focus on the problem of binary classification, i.e., positive against negative class prediction. All notations 
used throughout the text are summarized in Table 1. Initially, an indexed set x1, x2, …, xN of N training instances 
and a corresponding sequence y1, y2, …​, yN of N class labels are provided. These labels are known as “binary target 

Notation Meaning

x Data instance, i.e., input

y Class label, i.e., output

z =​ (x, y) Instance-label pair

,X Z Set of instance-label pairs

S Number of ensemble members

T Number of boosting rounds

f(x), F(x), Φ​(x) Hypotheses, i.e., model outputs

⋅( ) Loss function

D Probability distribution

R(⋅​) True (generalization) error

Remp(⋅​) Empirical (observed) error

β Algorithmic stability measure

η Data subset size as a fraction

P[⋅​] Probability

E[⋅​] Expected value

τ Iterator used in the collaboration context

pc
Collaboration probability at each boosting 
round

nexc
Number of instances to be exchanged during 
one collaboration

Table 1.   Notations used throughout the text (in order of appearance).
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variables”. Assume that there is no erroneous instance labeling by any means and that each training instance has 
a deterministic class label in {−​1, +​1}. Each of the N training instances in   represents a d-dimensional real 
vector = … ∈ = …x x x x i N[ ] , 1, ,i i i i

d T d(1) (2) ( ) , such that each vector component might have a different 
underlying nature and type, but can be comprehensively represented in . The training input to an arbitrary clas-
sification model is  = …x x xy y y{( , ), ( , ), , ( , )}N N1 1 2 2 , where the corresponding class label yi is appended to 
each instance to form an input-output pair (xi, yi).

A binary classification ensemble for the data in   is built using L =​ ST weak classifiers which are grouped into 
S boosting ensembles such that each of them consists of T weak classifiers. Essentially, the ensemble has two  
levels. The first, i.e., low level consists of all weak learners, while the boosting ensembles form the second, i.e., high 
level. Due to this bi-level structure, an advantage is taken from both bagging and boosting throughout the model’s 
training43. The bagging technique generates multiple bootstrap samples from a single training set. The sampling 
variant proposed here relies on stratified sampling without replacement, resulting in multiple training subsets 
  …, , , S(1) (2) ( ), each used for learning a single boosting ensemble afterwards (details are provided in SI). 
Here, to illustrate our collaborative strategy we employ Gentle Boost - a variant of boosting first proposed in  
ref. 34 in order to make the training process terminate at a lower risk of overfitting the training data and reduce 
AdaBoost’s susceptibility to noise. In Gentle Boost, regression stumps are the choice for the weak learning com-
ponents, introducing confidence through real-valued predictions. Let us denote each of these stumps by f; we add 
a superscript to indicate the Gentle Boost ensemble that f is a part of and a subscript to indicate its position 
(order) within that ensemble. Therefore, ft

j( ) is the t-th regression stump in the j-th Gentle Boost ensemble. Given 
an input instance x, the confidence prediction ∈xf ( )t

j( )  of each regression stump is a linear transformation 
 →f :t

j d( ) , where xf ( )t
j( )  is the confidence, or strength of the prediction. The raw confidence xf ( )t

j( )  can be 
interpreted as a class probability using the sigmoid function g(z) =​ 1/(1 +​ e−z) (note that g(0) =​ 0.5), such that for 
a probability > .xg f( ( )) 0 5t

j( ) , x is labeled as positive, and otherwise, it is labeled as negative. These outputs are 
totaled to form the Gentle Boost ensemble’s output  → −F T T: [ , ]j d( ) , such that for any instance x, each F(j)(x) 
can be evaluated as

∑= = … .
=

x xF f j S( ) ( ), 1, ,
(1)

j

t

T

t
j( )

1

( )

As in classical boosting, the data are weighted. We use wit
j( ) to denote the relative weight of xi

j( ) at the t-th itera-
tion of boosting, with respect to the weak learner ft

j( ). The weights are normalized such that ≤ ≤w0 1it
j( )  and 

∑ =η
= w 1i
N

it
j

1
( )  to form a probability distribution.

Finally, after all S Gentle Boost ensembles are trained, the totals F(j)(x) are averaged to mimic majority voting 
as

∑Φ =
=

x x
S

F( ) 1 ( ),
(2)j

S
j

1

( )

while sign[Φ​(x)] is taken to be the predicted class label of x. The ensemble superscript (j) might be left out in the 
following text for brevity, especially when talking about a single Gentle Boost ensemble whose position within the 
multi-model is unimportant. Other methods which could be incorporated in our collaborative strategy include 
gradient boosting and likelihood-based boosting (statistical boosting) algorithms37, as well as algorithms that 
optimize non-convex potential functions instead of the traditional exponential loss function44,45.

We present two collaborative (inter-ensemble) approaches for bagging of boosting ensembles, see Fig. 1. 
Collaboration is carried out by exchanging instances. Both approaches aim to reduce the existing upper bounds 
on the overall model’s generalization error, but the key difference is the stage at which they occur. The first 
approach, called weak-learner collaboration (W-CLB), operates between the weak learners of different boost-
ing ensembles; it employs collaboration during a chosen boosting round. It is a two-phase “data reorganization 
process”, in which the phases are interchangeably repeated at most nexc times with probability pc in each boosting 
round (see SI for description of both phases). W-CLB focuses on and penalizes correctly classified instances. 
More precisely, W-CLB does not perform classical margin relaxation since it replaces the instances that have been 
correctly predicted, with the weakest conviction. Although seemingly counterintuitive, SI makes it clear that 
highly confident correct predictions can be leveraged to fine-tune an optimal weak decision boundary, and most 
importantly, improve the overall algorithmic stability of the W-CLB approach. We provide theoretical proofs that 
W-CLB yields lower and potentially tighter upper bound.

The second approach, called strong-learner collaboration (S-CLB), operates only on prediction-ready ensem-
bles, between strong boosters, after all of them have been fully trained. S-CLB is conducted through multiple 
consecutive iterations. At a given iteration of S-CLB, a boosting ensemble initiates a collaboration procedure, 
pointing to one of its predecessors within the ensemble sequence. By doing so, the initiating ensemble and the 
one which precedes it within the sequence form a collaboration pair that goes through three steps described in 
detail in SI. The procedure is repeated for all collaboration pairs of this kind. Accordingly, since the collaboration 
is conducted in a cumulative fashion, the multi-model’s training process consists of a number of iterations that 
quadratically depends on the number of boosting ensembles, but only some of them will be state-changing. An 
S-CLB iteration changes the model’s state only if the collaboration between a pair of ensembles at that iteration 
was successful. Thus, the more “jurors” comprise the “jury”, the greater the chances that some of them might col-
laborate. SI provides the reasons for the way S-CLB has been defined; it explains why S-CLB works and how this 
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approach contributes to lowering and potentially tightening the model’s upper generalization error bound. Refer 
to SI for a fused discussion, which analyzes the procedure.

The W-CLB and S-CLB structural organizations are shown in Fig. 1(a,b), respectively. Both sub-figures reca-
pitulate a bottom-up representation of the models’ infrastructure in terms of their building blocks along with the 
role of each one in the ensemble learning.

Results and Discussion
Theoretical results.  Both the W- and S-CLB approaches employ collaboration for increasing the mean 
margin: boosting is a margin-maximization process that accounts for the phenomenon of generalization error 
reduction even after the training error reaches zero46. It is widely accepted that generalization performance is 
closely related to the increase of the margins in the training set47, implying lower generalization error. We use 
algorithmic stability to show that our collaborative approaches ensure good generalization. By extending find-
ings in refs 48–51, SI provides proofs that our collaborative strategies give lower and tighter upper bounds of the 
generalization error. Algorithmic stability has been utilized as reversed engineering: to guide which instances to 
exchange in order to improve the overall stability and reduce generalization error. The most important mathe-
matical statements that lend the effectiveness of both collaborative strategies are presented below, while the proofs 
and the explanation why both strategies work are provided in the SI.

Theorem 1. (Generalization error upper bound of Subbagged Gentle Boost, Supplementary Theorem S6). Assume 
that the loss function  is B-Lipschitzian, and ≤ Φ ≤ z M0 ( , ) , for all ∈z , where Φ  is the outcome of a sub-
bagging algorithm whose base machine is Gentle Boost. Next, assume that subbagging is done by sampling S sets of 
size p <​ N from some ∈ NX Z  uniformly and without replacement. Now, let the weak learning algorithm A have 
(pointwise) hypothesis stability βw with respect to  and let ε* =​ WeakD(A)/2 >​ 0. Then, for sufficiently large p, for all 
T, for Subbagged Gentle Boost in T rounds with probability at least 1 −​ δ over the random draw of ∼ DN ,

Figure 1.  Graphical representation of the bi-level collaborative ensemble of learning machines. Being able 
to solve a variety of real-world problems, it automatically employs artificial collaboration (shown in orange) 
within two distinct levels - between the weak components of the strong machines (W-CLB, i.e., left-hand side) 
or between the strong machines themselves (S-CLB, i.e., right-hand side). Strong machines are constructed via 
the Gentle Boost algorithm, using an automatically selected subset of available domain data (shown in green 
and deployed by a data sampling strategy). Machine learning algorithms (specified in SI) are used by inducers 
to generate predictive models. W-CLB operates during boosting, while S-CLB - employed afterwards - retrains 
the boosting ensembles after each successful data exchange (shown by the blue dashed arrows). W-CLB and 
S-CLB strive to improve the constituent models’ algorithmic stability, which in turn accounts for improved 
performance upon integrating them into an ensemble (shown in red). The theoretical definitions of the 
collaborative channels (shown in grey) have been carefully designed to promote parallelization by centralizing 
the input data source, resulting in time-decoupled ensemble members, making them highly applicable to 
prodigious learning tasks.
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Theorem 2. (Classification-loss-oriented upper generalization error bound of Subbagged Gentle Boost, 
Supplementary Theorem S9). Let Φ z( , )T  be a T-Lipschitzian classification loss function, for all ∈z  , where 

 Φ →: d
  is the outcome of a real-valued Subbagged Gentle Boost model consisted of S base Gentle Boost ensem-

bles, while each one of them is trained using T >​ 1 weak learners. Then, for any N ≥​ 1, and any δ ∈​ (0, 1), with prob-
ability at least 1 −​ δ over the random draw of a training set  , 

ηβ η β δ
Φ ≤ Φ + + +R R N

N
( , ) ( , ) 4 (8 1) ln(1/ )

2
,

(3)emp
T

p p  

where βp is the stability of the base Gentle Boost ensemble with respect to T, and  η = /j( ) .

Theorem 3. (W-CLB yields almost-everywhere lower empirical exponential loss of Gentle Boost, Supplementary 
Theorem S8). Let t be the current round of Gentle Boost with an outcome  = ∑ =x xF f( ) ( )t s

t
s, 1 ,  and assume that 

W-CLB is injected after training f x( )t , , i.e., between rounds t and t +​ 1, yielding 
′ft

h
,  and ′Ft

h
, , respectively. Then, 

with a high probability of ω, W-CLB yields a lower empirical Gentle Boost error −
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Proposition 1. (Supplementary Proposition S3). Let f be the outcome of a real-valued classification algorithm, 
trained on a dataset   and let  be the exponential loss. Then for any two correctly classified training instances 

∈z z,i k , such that  ≤ ≤x xy f y f0 ( ) ( )i i k k ,

− ≥ − ∈ .∪ ∪   f z f z f z f z z( , ) ( , ) ( , ) ( , ) , (5)i i k ki z k z\ \ ZX X X X

Theorem 4. (Monotonicity of the empirical error estimate, Supplementary Theorem S10). Let  Φ →: d
  be the 

outcome of a real-valued collaborative Subbagged Gentle Boost model trained on  . If S-CLB is used as a method for 
collaboration between its constituent Gentle Boost ensembles, then Φ τR ( , )emp

T ( )  , as a function of τ, monotonically 
decreases as the value of τ increments by one.

Proposition 2. (Supplementary Proposition S4). Let FT ,  be the outcome of a Gentle Boost algorithm trained on   
in T boosting rounds that acts like a base machine of a real-valued Subbagged Gentle Boost. Then, given two positive 
integers T′​ and T′​′​ such that T′​ ≤​ T′​′​, for any instance = ∈xz y( , )i i i   that is correctly classified by both ′FT ,  and 

″FT , ,

− ≥ − ∈ .∪ ∪′ ′ ′ ′ ″ ″ ″ ″   F z F z F z F z z( , ) ( , ) ( , ) ( , ) ,T T i T T i T T i T T i, , , ,i z i z\ \ ZX X X X

Numerical results.  We tested the algorithms on nine publicly available datasets: Australian52, Breast 
Cancer53, Diabetes52, Heart52, Ionosphere52, Liver Disorders52, Lung Cancer52, Mammographic52, and Vote52. SI 
provides details on the datasets, see Supplementary Table S1. The testing data was sampled uniformly and at 
random using 20% to 40% of the original data, depending on the amount of available data. The rest was used 
for training the algorithms. Of course, in a case when a test set was supplied by the source, the split proce-
dure was omitted. The total number of weak learners varies and the results are compared for collaborative sub-
bagged boosting using two approaches: W-CLB and S-CLB. The minimal generalization errors are summarized 
in Table 2. The error decreases in per cent, along with the corresponding number of prospective collaborations 
between the model entities that were successful are encapsulated in Tables 3 and 4, respectively. The minimal 
errors shown in Table 2 for Gentle Boost and Subbagging are computed through 100,000 rounds of boosting using 
all available training data; for Subbagging we tested all possible subset sizes, while ensemble size ranged from 2 to 
1000. We report the minimal test errors.

Although easiest to predict, our algorithms decrease an already low error on Breast Cancer, thus demonstrat-
ing an ability to capture obscure patterns in data. When applied to the Subbagged Gentle Boost ensemble, both 
W-CLB and S-CLB account for prediction of unobserved class labels with surpassing performances. The decrease 
in errors for all datasets is statistically sound. In terms of computational demand, the faster W-CLB scheme in 
a two-level ensemble of ST weak learners runs up to five times faster than boosting in T rounds over the train-
ing set, depending on the selected parameter values, shown in Supplementary Table S2 (the influence of these 
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parameters on the overall complexity of both approaches is illustrated in Figures S1 and S2). This number comes 
from the algorithmic complexity in Section S2.1. Both approaches have affirmed their robustness to variable 
number of ensembles S, thus resulting in a twisting point, that when surpassed, adding additional ensembles to 
the model becomes ineffective. By operating among weak learners, W-CLB introduces a negligible computational 
overhead. Moreover, W-CLB operates contrary to common knowledge in margin theory because it penalizes 
correct predictions. Common sense implies that it is best to replace the instance with the smallest negative margin 
(that is, the most confident wrong prediction) by an instance with a greater positive margin. In the SI we stress 
this phenomenon and provide several reasons to justify the actual W-CLB approach.

The algorithms were also evaluated in a medical setting for protein detection in texture analysis of gel elec-
trophoresis images12. Figure 2 summarizes our findings. Comparing to different machine-learning algorithms: 
subgroup-based Multiple Kernel Learning, Recursive Feature Elimination (RFE) with various classifiers (Naïve 
Bayes, SVMs, Bagged Trees, Random Forest and Linear Discriminant Analysis) and a Genetic-Algorithm-based 
approach with SVMs as decision functions, our algorithms show surpassing performance of approximately 0.9773 
AUROC, compared to 0.9574 or less (see Fig. 2). The confidence intervals for the mean AUROC over ten folds 
have shown that the improvements by both W-CLB and S-CLB are statistically significant, i.e., our confidence 

Dataset Subbagging Gentle Boost W-CLB S-CLB

Australian 16.5468 12.9496 10.0719 10.7914

Breast Cancer 3.9286 3.9286 1.7857 1.7857

Diabetes 20.7792 24.0260 18.8310 18.1818

Heart 16.6667 18.5185 11.1111 11.1111

Ionosphere 8.4906 7.5472 5.6604 5.6604

Liver Disorders 20.2899 18.8406 14.4928 14.4928

Lung Cancer 2.6846 18.1208 0.6711 0.6711

Mammographic 15.0259 16.5803 14.5078 13.9896

Vote 3.4091 2.2727 1.1364 1.1364

Table 2.   Minimal generalization error rates in per cent.

Dataset
Subbagging vs. 

W-CLB
Gentle Boost 

vs. W-CLB
Subbagging vs. 

S-CLB
Gentle Boost 

vs. S-CLB

Australian 39.13% 22.22% 34.78% 16.67%

Breast Cancer 54.55% 54.55% 54.55% 54.55%

Diabetes 9.38% 21.62% 12.50% 24.32%

Heart 33.33% 40.00% 33.33% 40.00%

Ionosphere 33.33% 25.00% 33.33% 25.00%

Liver Disorders 28.57% 23.08% 28.57% 23.08%

Lung Cancer 75.00% 96.30% 75.00% 96.30%

Mammographic 3.45% 12.50% 6.90% 15.63%

Vote 66.67% 50.00% 66.67% 50.00%

Table 3.   Decrease of the minimal generalization error by W-CLB and S-CLB, compared to Subbagging and 
Gentle Boost, respectively.

Dataset W-CLB S-CLB

Australian 50 284

Breast Cancer 25 100

Diabetes 100 549

Heart 50 155

Ionosphere 15 107

Liver Disorders 5 390

Lung Cancer 2 149

Mammographic 120 144

Vote 83 337

Table 4.   Total number of successful tentative collaborations in W-CLB and S-CLB until the minimal 
generalization error has been reached. The total prospective number of collaborations for W-CLB is Tpcnexc  
(a successful collaboration will assure that all S weak learners have successfully exchanged an instance within 
their own training set), while this number for S-CLB is equal to S(S −​ 1)nexc/2.
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intervals are non-overlapping compared against those reported in ref. 12. This holds true beyond 25 boosting 
iterations (T >​ 25) for W-CLB and beyond 6 ensembles (S >​ 6) for S-CLB. The confidence interval of the mean 
AUROC reported in ref. 12 is (0.9574 ±​ 0.0029), versus (0.9758 ±​ 0.0122) and (0.9789 ±​ 0.0102) at T =​ 30 and 
S =​ 10, for W-CLB and S-CLB, respectively, confirming statistically significant improvements. The methods are 
also robust to T and S since the confidence intervals become tighter as these parameters increase.

Discussion
While both methods achieve similar performance, they follow a dramatically different approach. There is one crit-
ical difference that sets W-CLB apart from S-CLB. The W-CLB definition employs collaboration during boosting, 
while the latter requires prediction-ready boosters to conduct it. According to S-CLB, each booster is retrained 
after a probe exchange occurs, thus retaining margin enlargement. On the other hand, W-CLB uses a modified, 
further training, step in favor of time complexity. This makes W-CLB a more flexible and scalable approach in 
time-critical scenarios. Moreover, in SI we argue that the W-CLB collaborations can be decoupled in time, mak-
ing it highly scalable. In the case of S-CLB, only two boosters constituting a collaboration pair can be decoupled 
in time, making it less scalable. Nevertheless, the fact that each pair of boosters is retrained right after they collab-
orate makes this approach a safer one when time is not critical.

Conclusions
In statistical learning, ensemble methods have become popular as a relatively simple device to improve the 
predictive performance of learning algorithms. Bagging, a parallel ensemble method, is a variance reduction 
scheme, at least for some base procedures. On the other hand, boosting methods, which are sequential ensem-
ble algorithms, primarily reduce the bias of the model’s base procedure. By combining bagging and boosting 
(parallel and sequential approaches) and by designing in-training or prediction-ready inter-boosting ensemble 
collaboration, we have suggested approaches which outperform subbagging and boosting in both prediction 
accuracy and speed. The collaborative principles presented in this manuscript were firmly supported by both the 
theoretical and the numerical results. Moreover, parameters of both W-CLB and S-CLB algorithms, reported in 
Supplementary Table S2, were easy enough to find by trial and error, barring a few cases manifesting highly imbal-
ance class distributions. Finally, we did not apply any data preprocessing, showing the algorithms’ efficacy on and 
robustness to raw structured data. Since boosting has been linked to statistical estimation and additive basis 
expansion, which in turn, opened new perspectives of using boosting methods in many other contexts than clas-
sification (including generalized regression, density estimation, survival analysis, and multivariate analysis), we 
hope that this approach could also be extended to other domains in statistics. Last but not least, both approaches 
are seemingly equivocal in their effectiveness, regardless of the level (weak or strong) on which collaboration is 
leveraged. Paraphrasing Schapire and Freund18, who compared the general concept of boosting with “garnering 
wisdom from a council of fools”, we could add that “collaborative fools could generate even more wisdom”.
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