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Abstract. As the prevalence of drones increases, understanding and preparing for possible adversarial uses

of drones and drone swarms is of paramount importance. Correspondingly, developing defensive mechanisms in

which swarms can be used to protect against adversarial Unmanned Aerial Vehicles (UAVs) is a problem that

requires further attention. Prior work on intercepting UAVs relies mostly on utilizing additional sensors or uses

the Hamilton-Jacobi-Bellman equation, for which strong conditions need to be met to guarantee the existence of

a saddle-point solution. To that end, this work proposes a novel interception method that utilizes the swarm’s

onboard PID controllers for setting the drones’ states during interception. The drone’s states are constrained only

by their physical limitations, and only partial feedback of the adversarial drone’s positions is assumed. The new

framework is evaluated in a virtual environment under different environmental and model settings, using random

simulations of more than 165,000 swarm flights. For certain environmental settings, our results indicate that the

interception performance of larger swarms under partial observation is comparable to that of a one-drone swarm

under full observation of the adversarial drone.
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1 Introduction

The versatility and availability of UAVs make
them particularly useful for various tasks such
as payload delivery, reconnaissance, infrastruc-
ture crack assessment [16, 17], plant recognition
in precision agriculture [13], and even facilitat-
ing remote unauthorized access to various digital
systems [1]. Understanding possible adversarial
employment of drones and developing defensive
mechanisms against noncompliant drones is an
increasingly important issue as drones become
more readily available. Consequently, developing
drone-on-drone interception mechanisms is instru-
mental. In the context of this paper, interception
is defined as the act of preventing adversarial
drones from reaching the desired destination by
utilizing friendly drones with a spherical area
of influence. By considering the possibility of
a drone-on-drone interception, it is possible to
leverage existing models of drone behavior to im-
plement a method of interception.

Previous work on UAV interception includes
using the Hamilton-Jacobi-Bellman equation

[2, 3, 4], for which strong necessary and suffi-
cient conditions need to exist to guarantee the
existence of a saddle-point solution. One such
condition is that the value function needs to be
differentiable or Lipschitz continuous. Other work
relies on additional sensor data to intercept the ad-
versarial UAVs [5, 6]. Such sensors include stereo-
optical sensors combined with image segmenta-
tion algorithms and sensor nodes able to capture
the configuration parameters of the evader while
also simultaneously providing the uncertainty of
sensor measurements. As interception might be
performed under hostile or environmentally non-
desirable settings, in which one or several sensors
might become damaged, it is crucial to have a
functioning system even after a sensory failure
occurs. The work in [11] focused on developing
a mission-level robust, self-adaptive framework
that offers a recovery system under a presence of
a component fault. Intercepting the adversarial
drone with as few sensors as possible is preferable
since the adversary can corrupt the sensor data re-
quired for its detection. Nevertheless, visual data
is very useful for generating obstacle maps and
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can also be used for localization and navigation
guidance [14]. Novel path planning algorithms,
such as [12], can accompany such visual-based
navigation systems. Such work can supplement
the work presented in this paper, especially if
interception is performed in urban environments
with many obstacles. However, relying on visual
data alone in fast-paced settings for interception
purposes can hinder the chance of successful in-
terception.

In this framework, a drone swarm under con-
trol of a defender is able to observe an adversarial
swarm and then make predictions about its path,
decide on an interception point, and move in such
a way as to maximize the chance of collision be-
tween drones within the swarms. In addition to
such fully observed environment, we also consider
the case of a partially observed environment. We
define such an environment as one where a friendly
(blue) swarm has access to an adversarial (red)
drone’s positions for only a portion of its flight.
More precisely, in a partially observed scenario,
the global positions of the adversarial drone are
known up to some critical time. After this crit-
ical time, the global positions of the adversarial
drone are lost. When this position data is denied,
the friendly swarm must make use of a predictive
model to estimate the positions of the adversarial
drone.

Consequently, this work focuses on a novel in-
terception method and makes use of bootstrap
aggregation [7] to predict the adversarial drone’s
positions when they are not fully observable. The
primary novelty of our study is the development
of an effective machine learning-based swarm in-
terception method, capable of handling partially
observed environments. The main contributions
address the following research questions:

� Can the proposed interception method oper-
ate correctly under full observation conditions?

� Can the same method operate in a scenario
where observations are partially denied?

� Under what method parameters and en-
vironmental conditions does the proposed ap-
proach operate well?

These questions were answered by performing
experiments on simulated flights. A simulator,

based on the one described in [19] was used to
evaluate the proposed interception model. A com-
parison was made between runs using full obser-
vations and runs made with partial observations
by measuring their collision rates. In addition, an
investigation was made into the impact of 1) dif-
ferent swarm sizes, 2) parameters controlling dif-
ferent aspects of the simulated environment, and
3) critical parameters of the prediction and inter-
ception methods. The results obtained from run-
ning over 165,000 simulated flights demonstrate
that the proposed method is capable of successful
interception in both fully and partially observed
environments. Finally, for certain environmental
settings, larger swarms under partial observation
yielded comparable performance to that of a one-
drone swarm operating under full observation of
the adversarial drone.

2 Prior Work

Autonomous agents can be leveraged in order to
successfully detect and intercept a target [20, 21].
Effort has been made to understand this pursuer-
evader problem. Originally, this problem was cast
in the world of game theory [2], where the pursuer
and evader both have partially observed informa-
tion, and have opposing goals of evasion and in-
terception. Similarly, such a problem context has
been discussed as a partial information Markov
game [22]. In partially observed environments,
probabilistic trajectory distribution maps have
been combined with novel, spline-based, strategy
generation methods to provide interception plan-
ning [5]. Methods from control theory, like the
application of the Hamilton-Jacobi-Bellman equa-
tions [23, 4], have been used to generate contain-
ment strategies for swarms, even providing meth-
ods of interception when the adversary has faster
UAVs, given a sufficient number of ‘blue’ drones
in the intercepting swarm [3].

The work presented in this paper can be re-
garded as a continuation of the one presented
in [19]. While [19] focused mainly on trajectory
prediction and correction, this paper futher ex-
tends the problem by utilizing the aforementioned
trajectory prediction to solve the problem of ad-
versarial drone interception. Other works exist
that operate under the same assumption of min-
imal computational and sensor payload require-



ments; the work in [6] being one such example,
utilizes simple stereo optical sensors, combined
with a novel image segmentation method. Such
work demonstrated sufficient tracking capabilities
for interception-based tasks.

The ability to predict the trajectory of observed
UAV swarms is an important ability to have when
playing these purser-evader games. In the context
of a single drone, [24] shows that it is possible to
leverage deep learning to map observations of an
adversary to control a UAV. Again, in the context
of a single drone, [25] shows that it is possible, in
indoor race environments, to directly control the
flight trajectory of a single drone via a combina-
tion of convolutional neural networks and a path
planning system. Additionally, dynamic models
from control theory [26, 27] of quadrotor UAVs,
based on neural networks, demonstrate the use of
an offline framework for predicting a UAV’s trajec-
tory over time without knowing its control system
[28]. While these efforts are all novel, they oper-
ate in a context different from the goals of this
work. The number of training samples, assump-
tions of hardware availability, and the desire for
an online framework preclude directly modifying
these attempts.

Kalman filter [18] can also be used for predict-
ing the adversarial UAV’s trajectory. Utilizing
the Kalman filter would require the current po-
sition estimate of an adversarial UAV; however,
a closed-loop Kalman filter also depends on ad-
ditional sensor measurements to infer the current
from the previous adversarial UAV positions. It is
possible to use the Kalman filter in an open-loop
setting without taking the additional sensor mea-
surements into account; however, the uncertainty
of prediction will grow continuously throughout
time. In the partially observed setting, we oper-
ate under the assumption of zero sensory measure-
ments of the adversarial UAV. Not only do we not
assume the presence of sensors capable of measur-
ing an adversarial UAV’s speed in the partially ob-
servable settings, but we also regard the variance,
mean, or even the distributions under which the
environmental effect functions as begin unknown.
Moreover, constant velocity and constant acceler-
ation Kalman model would be insufficient since
the PIDs directly control UAVs’ acceleration in
the current simulation system. In addition, set-

ting up the dynamic matrix requires great knowl-
edge of the underlying physical system in many
cases.

Operating in partially observed environments
has been approached in other work, using bearings
to known landmarks for simultaneous localization
and mapping (SLAM) [29] and using received sig-
nal strength of radio frequency observations for
intra-swarm localization [30]. In our work, land-
marks and signal strength were not used to esti-
mate a drone’s current positions; instead, effects of
environmental influences were modeled by learn-
ing from an adversarial drone’s behavior, as ob-
served during the initial part of the flight.

3 Methodology

3.1 Problem Statement

Formally, a swarm S = {D1, . . . ,DD} is de-
fined as a collection of D individual drones. If
we define the blue swarm, SF as friendly, and
the red swarm, SA as adversarial, the intercep-
tion task can be formulated as finding a function
f : RωI×3 × R3 → R3, that maps the ωI -sized
window of past positions of an adversarial drone
and the positions of friendly drones, at timestep
t, to an estimated position at which the friendly
swarm might intercept an adversarial drone. In
other words, if P t

F denotes the blue drones’ posi-
tions at timestep t, and if ωt

A = [pt−ω+1
A , . . . ,pt

A]
denotes the adversarial drone’s ωI -sized window
of past positions at timestep t, then the estimated
point of interception at timestep t+ 1 is given by
f(ωt

A, P
t
F ) = I t+1

SA,SF
.

However, handling estimate updates at each
timestep poses a challenge since, in addition to
finding the point of interception, it is necessary to
provide the state updates for each friendly drone
w.r.t. the estimated point of interception.1 This
is a non-trivial problem, since the accumulation
of state updates can cause the friendly swarm to
overshoot the estimated point of interception or
to oscillate about that point considerably. This
problem is similar to that of setting the propor-
tional, integral, and derivative terms of a PID con-
troller. PID controller is often used when there is
a need to drive a system towards a target posi-

1We define the drone’s state at timestep t as that drone’s position, velocity, acceleration, and current target.



tion or a specific target level. The PID control
system achieves that by using a control loop feed-
back mechanism to control the underlying process
variables. The basic form of a PID controller is
given by Equation 1, where the error term is de-
fined as e = Target − Input and O is the output
from the PID controller. For a more comprehen-
sive analysis of the PID control system, we refer
the reader to [15].

O = KP +KI

∫
e(t) dt+KD

d

dt
e(t) (1)

Interception can be seen as PID tuning and set-
point updating, for which predicting the intercep-
tion point is required. For this reason, we have
decided to define a computationally inexpensive
interception module that utilizes the drones’ on-
board PID controllers to update the swarm’s state.
The friendly drones’ PID controllers’ output lim-
its are updated in each timestep, and the output
and the integral term are clamped to avoid inte-
gral windup. Furthermore, in each timestep, the
PID setpoint is set to the latest estimated point of
interception with respect to the friendly swarm’s
structure. For a better understanding on how
PID and interception are integrated, we refer the
reader to Section 3.2.

3.2 Interception Model

The path prediction method uses the observed (or
estimated) positions of an adversarial drone to de-
termine the probable trajectory of that drone. A
window of ωI past positions are tracked, thus cre-
ating an ωI × 3 matrix, ωt

A, for which the first
principal component is obtained. The first princi-
pal component corresponds to a direction in space
along which projections of points of the previous
ωI positions have the highest variance. We hy-
pothesize that such a path estimation method is
useful for automated drones, which tend to fol-
low a near-linear trajectory offset by environmen-
tal deviations. Finding the first principal compo-
nent of ωt

A can be posed as a maximization of the

Rayleigh quotient:

R(ωt
A, v) =

ωI∑
i=1

(p
t−(i−1)
A · v)2

argmax
v

R(ωt
A, v) = argmax

∥v∥=1

∥ωt
Av∥2 =

argmax
v

∥ωt
Av∥

∥v∥

Consequently, at a given timestep, our intercep-
tion framework assumes that this principal vector
represents the most likely linear path of the ob-
served swarm in subsequent timesteps.

The interception point is then estimated by pro-
jecting the center of the friendly swarm to the
line corresponding to the estimated path of an ad-
versarial drone. When the friendly swarm is far
away from the adversarial drone, and when envi-
ronmental deviations are significant, the predicted
interception locations will tend to oscillate around
the actual interception point. On the other hand,
as the friendly swarm approaches the adversar-
ial swarm, the oscillations significantly subside.
This behavior of the interception model can be
seen in Figures 3a and 3b, where the predicted
interception points are depicted as magenta and
black points for full and partial observations of the
adversarial drone, respectively. Ten most recent
predictions for the interception points are shown,
with more opaque points corresponding to more
recent predictions.

The friendly drones’ onboard PID controllers
complement the above mentioned interception
method since, as friendly drones approach the
mean estimated interception point, the PIDs will
cause drone accelerations and velocities to oscil-
late about zero, due to the evenly spread predicted
interception locations. This method thus results
in a friendly swarm reaching the expected inter-
ception point followed by its slight repositioning
as the friendly and adversarial swarms draw closer
and as the interception prediction becomes closer
to the ground truth.

Figure 1 emphasizes this interplay between the
PID controllers, interception, and path prediction
models in the form of a control scheme. It is im-
portant to note that the PID within the simulator
is responsible for controlling the UAVs’ acceler-
ation, aadv for adversarial’s, and a for friendly
swarm’s acceleration values in a given timestep.
The friendly swarm has PID controllers with
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Fig. 1: Interception control scheme. The output from the path prediction model depends on the setting, which is indicated by
the ⊕ symbol. Stochastic environment also affects the adversarial UAV’s final velocity vector, as indicated by the ⊞ symbol.

changing targets over time, TF , while the adver-
sarial UAV’s target, TA, is static. A more realistic
setting would, however, include a low-level, UAV-
dependent PID, which derives the acceleration by
means of controlling the rotor speed and whose
output is fed further into the control scheme. This
UAV specific implementation was abstracted, and
low-level controllers were not used.

Based on Figure 1, the output of friendly UAV
PIDs is fed into the simulation model state update
since the drafting effect depends on the swarm’s
collective position at a given time. Furthermore,
the path prediction model is used in either the
fully observable setting or a partially observable
one, based on which the adversarial UAV’s posi-
tion is returned. When operating in a fully ob-
servable setting, the interception model receives
the actual adversarial position as obtained by its
latent PID and environmental deviation model. In
a partially observable setting, the bagged MLP re-
gressor’s output serves to estimate the final adver-
sarial UAV positions. The interception model’s
output is fed back to set the new targets of the
friendly UAVs’ PID controllers. Also, the path

prediction output is fed back to itself as the obser-
vations and estimates need are saved in a window
history.

3.3 Advantages of larger swarms

Let ϵ be the radius of each drone. We will de-
fine a collision of two drones as a point in time
in which the distance between the centers of the
two drones is less than 2ϵ. Moreover, if a friendly
swarm, SF , has a planar structure that is defined
by x ∈ (ℓ1, ℓ2) and y ∈ (f1(x), f2(x)) then:

p(x) =

min{cy+
√

r2e−(x−cx)2,f2(x)}∫
max{cy−

√
r2e−(x−cx)2,f1(x)}

dy

E[X] =
1

r2eπ

min{cx+re,ℓ2}∫
max{cx−re,ℓ1}

p(x) dx (2)

where (cx, cy) is the center of the friendly swarm
and re is the error of the estimated interception



point at timestep tI , and X is a random variable
that takes the value of 1 if interception occurred
and 0 otherwise. Here timestep tI is defined as
the timestep at which the adversarial drone passes
through the plane Π, where SF ⊂ Π. The expec-
tation E[X] can be thought of as the probability of
achieving interception using a swarm whose struc-
ture is described with ℓ1, ℓ2, f1(x), and f2(x), and
with an interception point estimate error of re at
time tI . In Equation 2, an implicit assumption
was made that the friendly swarm has sufficient
time to reach the estimated interception point at
timestep tI . Such assumption might not always
hold, as it depends on how far in advance the
adversarial UAV was spotted, the capabilities of
both friendly and adversarial swarms, as well as
the distances between the adversarial UAV’s tar-
get, friendly swarm, and the adversarial UAV it-
self. In addition, environmental deviations can
also impact whether it will be possible to reach
the interception point in time. The assumption of
this paper is that friendly and adversarial UAVs
have similar performance in addition to observing
the adversarial UAV sufficiently far in advance.

In particular, let us consider a friendly swarm,
SF with a square-like planar shape. If d repre-
sents the minimum distance of each drone to their
neighboring drone in the swarm, the sides of a
square planar swarm consisting of n2 drones have
a length of (n − 1)d + 2ϵ. Separation parame-
ter, d, should generally be set to the greatest pos-
sible value that prevents friendly swarm’s mesh
penetrability by the adversarial drone. There-
fore, the separation parameter, d, should be re-
garded as a function of ϵ and the friendly swarm’s
planar structure. If we denote the coordinates
of the drone with the lowest x and y coordi-
nates as the origin, then SF has a center of

( (n−1)d
2 + ϵ, (n−1)d

2 + ϵ). The friendly swarm, SF ,
is then defined by ℓ1 = 0, ℓ2 = (n − 1)d + 2ϵ,
f1(x) = 0, and f2(x) = (n− 1)d+ 2ϵ.

Therefore, it is possible to evaluate Equation 2,
conditioned on knowing the interception point es-
timate error re. For d = 0.5, ϵ = 0.15, E[X] is
evaluated for different values of re, using swarms
of different sizes, and the results are depicted in
Figure 2. We can observe that there is an evident
improvement in the interception performance as
more drones are added to SF .

It is important to mention that directly evalu-
ating Equation 2 is not feasible in most cases, for

which no prior knowledge of the introduced inter-
ception point estimate error, re, exists. However,
E[X] can still be evaluated empirically, using mul-
tiple simulations performed under similar environ-
mental conditions, as shown in the experimental
section of this paper. The interception point es-
timate error, re, consists of both the interception
model error, which is in turn also dependent on
the path prediction model error. From Figure 4,
we can notice that as the path prediction error
decreases, by having more timesteps for training,
E[X] increases, which corresponds with the trend
of E[X] shown in Figure 2.

3.4 Adversarial Drone Path Prediction

The interception model requires a window of an
adversarial drone’s previous positions in order to
estimate an interception point. However, when
full observations of the adversarial drone’s posi-
tions are not available, the interception model re-
quires that those positions be estimated. Due to
the assumption of low on-board computing power,
as well as the assumption that a relatively low
number of training steps are available for learn-
ing, deep learning models were not considered for
such estimation.

Instead, a Multi-output regressor consisting
of small multilayer perceptron (MLP) regressors
with one hidden layer of 30 units is selected as
our base model [31]. The MLP regressor uses a
ωM -sized window of previous positions of the ad-
versarial drone as its inputs when constructing the
training data. Five of these Multi-output regres-
sors were bagged with bootstrap aggregation [7],
and the mean prediction was used as the adver-
sarial drone’s position estimate when those posi-
tions are not available. The MLP is trained using
L-BFGS optimization, with a regularization pa-
rameter α = .015. This model is similar to the
unstructured regressor introduced in our related
study aimed at inter-swarm collision avoidance in
a GPS-denied environment [19].

The training outside of the simulation would be
performed in a distributive fashion, with model
sharing between drones. If the training to be per-
formed is longer than one simulation tick, dead
reckoning would be used until the training is com-
plete. In the current simulation environment, the
assumption is that there is enough computational
power shared among drones to complete the train-



Fig. 2: Comparison of the modeled interception probability using swarms of different sizes. The expected probability of a
successful interception is represented on the y-axis, whereas the x-axis represents a particular value of the interception point
estimate error, re. Equation 2 was used to evaluate the expected probability of an interception, E[X].

ing within one simulation tick.

4 Results

Extensive experiments were conducted to investi-
gate the effectiveness of the proposed prediction
and interception method. Additionally, an inves-
tigation was made into the parameter space of the
environmental model and the impact that vari-
ous settings have on the ultimate behavior of the
interception model. This investigation was done
to provide additional support to the hypothesis
that the interception model benefits from lever-
aging greater-sized swarms. In the case of such
swarm sizes, the friendly swarm’s structure would
absorb the spatial error introduced by the inter-
ception and path prediction methods, leading to
a higher interception accuracy, as we have empir-
ically shown.

4.1 Simulation process

Each class of experiments makes use of the be-
spoke simulated drone environment, similar to the
one described in [19]. This environment can model
the trajectories of swarms composed of an arbi-
trary number of drones. Swarms can be given
target locations and are able to host the mod-
els described above. A random wind model is
used to provide environmental deviations within
each run. Such a wind model contains parame-
ters that control distributions governing the inten-
sity, direction, length, and gust frequency. Specif-
ically, the polar and azimuthal angles of wind
gusts are sampled from a Gaussian distribution
θ ∼ N (µθ, σθ) and ϕ ∼ N (µϕ, σϕ), respectively;
the initial wind settings are set to µθ = µϕ = −π

6 ,
and σθ = σϕ = π

24 radians. The period between
gusts, tcalm, and the duration of gusts, tgusting are
sampled as tcalm ∼ N (µcalm, σcalm) and tgusting ∼
N (µgusting, σgusting), where µcalm = µgusting = 6
and σcalm = σgusting = .8 simulation ticks, by de-
fault.

In addition, the wind model is supplemented
by a drafting effect, in which drones within the



swarm’s structure benefit from experiencing less
intense winds than the drones in the outer layers of
the swarm that are exposed to the wind. The lay-
ers are calculated by recursively considering parts
of the convex hull that are directly exposed to the
wind, and each successive layer experiences a 10%
reduced effect of wind.

The maximum velocity of both friendly and ad-
versarial drones is set to a value of one, and the
maximum acceleration is set to a value of two for
each direction, for a unit of time. It is assumed
that the adversarial drone is moving at full ve-
locity at the beginning of each simulation while
the friendly swarm is static. Each drone is con-
sidered to have a radius of 0.15. Unless specified
differently, a the wind magnitude is sampled as
N (µw, σw), where µw = 1 and µw = .3 and ap-
plied whenever gusts occur within the simulation.
For all simulations, only swarms with a simple
planar structure were considered, with a separa-
tion between rows and columns of UAVs of 0.45.
However, there is no reason to assume that dif-
ferent spacial configurations, aimed towards the
task of interception, would not yield similar re-
sults. Changing the initial wind angle settings did
not significantly change the interception perfor-
mance due to the path prediction model’s in-flight
training.

For each unit of time, 20 simulation ticks are
performed. The window size used for path pre-
diction, ωM , and the window size used for inter-
ception direction and point estimate ωI are both
initially set to a value of 10 simulation ticks.

4.2 Interception Method Evaluation

In the first set of experiments, a comparison was
made between two settings, the difference be-
tween them being the type of input provided to
the model. In the full observation scenario, the
friendly swarm is considered to have perfect ob-
servations of the adversarial swarm’s positions at
all timesteps. In the partial observation setting,
the friendly swarm has perfect observations of the
adversarial swarm, but only up to a certain crit-
ical timestep t < tc, after which it must rely on
the outputs of the prediction model. It is useful
to note that the interception and path prediction
models would work even if we observed an adver-
sarial UAV’s true positions briefly or even inter-
mittently after the critical timestep. In a realis-

tic, partially observable setting, such a use case
might become useful since adversarial UAV ob-
servations might not be unavailable for extended
periods, even in urban or occluded environments.

Nevertheless, in all experiments, a blue swarm is
attempting to intercept a single, adversarial drone
whose positions are entirely unavailable after tc.
An example run of the simulation is shown in Fig-
ure 3.

In addition, the current simulator includes a
UAV model with a spherical area of influence
centered about each UAV. A more general UAV
model should account for differently spaced ar-
eas of influence and would likely lead to a model
in which the center of an ellipsoid does not cor-
respond to the actual UAV location due to its
greater front-side influence. Under such assump-
tion, we would need to split the interception point
estimate error into its spatial components and
look at the projections on the plane spanned by
the friendly UAVs. Such a projected ellipsoid
would be superimposed over the area of influence
of friendly UAVs, and the obtained intersection
would be the possible interception area. In case
that this intersection is an empty set, no intercep-
tion would occur. The proportion of such area to
the area in which the adversarial UAV might inter-
sect the plane spanned by friendly UAVs provides
us with the probability of intersection.

Using such a general interception model is
computationally more involved and includes ad-
ditional parameters that account for differently
spaced areas of influence. These changes would re-
quire adjusting the simulator, and therefore, such
a general model was not used in the current ex-
perimental setup.

4.2.1 Full Observation Scenario

In this setting, the friendly swarm is considered
to have perfect observations of the adversarial
swarm’s positions at all timesteps. This exper-
iment serves as a baseline evaluation of the in-
terception procedure itself and helps to deter-
mine and compare the interception efficacy using
swarms of different sizes. Table 1 reports the inter-
ception accuracies, mean collision timesteps, and
the standard deviation of collision timesteps for
swarms of size {1, 4, 9, 16} in a square planar con-
figuration. Hundred simulated flights were run,
for each swarm size, to evaluate the percent of



(a)

(b)

Fig. 3: Example of a simulation run during (a) the early phases of the simulation and (b) late stages of the simulation. Both
the actual (fully observed) trajectory of the adversarial drone, as well as its inferred trajectory, are depicted in green and
orange, respectively. The movement of the friendly swarm when relying on full observations is provided by a blue line, while
the red line indicates the friendly swarm’s trajectory under partial observation.



Table 1: Percent of runs with successful interceptions when full observations were available to friendly swarms of 1, 4, 9, and
16 drones.

Swarm Size 1 4 9 16

% of successful interceptions 93 100 100 100

Mean interception timestep 207.46 205.05 202.78 200.48

Standard deviation of interception timesteps 3.98 4.29 4.07 4.14

successful collisions.

4.2.2 Partial Observations Scenario

The second experiment proceeds in an identical
manner but introduces denial of an adversarial
drone’s location feedback. In this setting, after
timestep tc, the friendly swarm is given no infor-
mation about the adversarial drone’s actual posi-
tions and, instead, must rely on the outputs of the
prediction model to intercept it. During the infer-
ence steps, i.e., in timesteps t > tc, the inputs to
the interception model are the predicted, instead
of the actual, positions of the adversarial swarm.
Figure 4 presents the percent of successful inter-
ceptions over 100 runs, for different values of tc,
starting from tc = 50, to tc = 210, with a step of
5, for a total of 3, 300 simulations per swarm. The
same set of swarm sizes as in the first experiment
is considered.

An important observation is that the experi-
mental results, shown in Figure 4, follow the mod-
eled interception probability proposed by Equa-
tion 2 and presented in Figure 2. As the predic-
tion model uses more timesteps for training, and
as the inference window shortens, the introduced
interception point estimate error decreases - which
is consistent with the findings from Figure 2.

4.3 Parameter Space Exploration

In addition to investigating the efficacy of the pro-
posed methods, an effort was made to explore the
impact of environmental and interception model
parameters on the outcomes of interception ex-
periments. The parameters governing the wind
intensity, wind duration, and interception sensi-
tivity were investigated.

4.3.1 Wind Model Parameters

The simulator utilizes a random wind model to
simulate environmental deviations. The basis of

this model is a set of governing parameters that
control the probability distributions for defining
elements of a gust of wind: its intensity, duration,
direction, and frequency. Two sets of experiments
were run, investigating the effect of varying the
parameters for intensity and the parameters for
the wind duration. The effect of varying the wind
direction parameters was not investigated since
swarms have a square planar shape, and thus, due
to symmetry, it is expected that varying the wind
direction would have little effect on the underlying
interception accuracy.

Investigation of Wind Intensity Parameters

In this experiment, the mean and variance gov-
erning the intensity of the wind distribution were
varied, and observations were made of the result-
ing interception accuracy. Figure 5 reports the re-
sults, in which the horizontal axis represents the
standard deviation of the wind intensity, while the
vertical axis represents the mean wind intensity.
The percentage of runs in which interception oc-
curred is described by heat-maps generated using
Gaussian interpolation. The same range of values
was selected for testing both the wind intensity
means and the wind intensity standard deviations,
with values ranging from 0 to 1, with a step size of
0.05, for a total of 441 different combinations. For
each tested combination 100 simulations were run,
resulting in a total of 44,100 simulations. Only
swarms of size 1 and 16 were selected for testing
due to the time-consuming nature of this experi-
ment.

The negative effect of the wind intensity is
evident when the prediction model is run on a
friendly swarm consisting of a small number of
drones. Wind with a high mean intensity causes
significant deviations from the expected linear tra-
jectory, which the adversarial drone is assumed
to follow. Consequently, the introduced error re-
sults in a limited interception success when full ob-
servations are unavailable, and when small-sized
swarms are utilized under strong wind conditions.



Fig. 4: Interception accuracy comparison in a partially observed scenario. Blue, red, green, and orange lines correspond to
friendly swarms of size 1, 4, 9, 16, respectively. The percentage of runs with successful interceptions is represented by the
y-axis, whereas the x-axis represents a particular value of tc from which locations of the adversarial drone were unavailable.

However, as observed from Figure 5, the intercep-
tion accuracy heat-map of a one-drone swarm, un-
der perfect observation, is comparable to that of
a swarm consisting of 16 drones under partial ob-
servation. This serves as an indicator that adding
more drones to the friendly swarm can help over-
come the above-mentioned negative effect of wind
on the interception accuracy.

Investigation of Wind Duration Parameters

Similar to investigating the wind intensity param-
eters, an experiment was run where the values of
the mean duration and the variance of gusts were
perturbed. The wind duration mean was varied
from 0 to 20, with a step of 1, and the wind du-
ration variance was varied from 0 to 10, with a
step of 0.5. Consequently, 441 different combina-
tions were tested, and 100 simulations were run for
each combination. However, since perturbing the
variance in the given range had no effect on the
percentage of successful collisions, only the graph
describing the relation between the interception
accuracy and the wind duration means, for a one-
drone swarm, is depicted. Figure 6a reports these
results.

4.3.2 Interception Model Parameters

The main governing parameter of the intercep-
tion model is the window size, ωI , used for cal-
culating the principal component vector that cor-
responds to the estimated trajectory of an adver-
sarial drone. Experiments were run using inter-
ception windows with previous points of different
sizes. Windows of size ωI = 2, up to ωI = 50,
with a step of 1, were tested. The mean duration
of gusts and the mean period between gusts was
set to 6 timesteps. In order to compare the effect
of different interception window sizes on swarms
of different sizes, the number of timesteps used
for training, tc, was set to a value such that the
swarm has an interception accuracy of nearly 50%
when ωI = 10, for each swarm respectively. For
each choice of ωI , 100 simulations were run per
swarm type, with a total of 4,900 simulations per
swarm type. The results of these experiments are
depicted in Figure 6b.

From Figure 6b, we can observe that the inter-
ception accuracy has a local maximum for ωI ≈ 5,
and a local minimum for ωI ≈ 13, after which the
interception accuracy rises gradually. These val-



(a) Swarm of size 1

(b) Swarm of size 16

Fig. 5: Comparison of wind intensity parameters on swarms of size (a) one and (b) 16. The x-axis values correspond to values
of standard deviations of wind intensity, while the y-axis values correspond to mean values of wind intensity. The left column
contains a heat-map generated under partial observations, while the right column contains a heat-map generated under full
observations of the adversarial swarm.

ues are related to the mean gust duration and the
mean periods between gusts. These results show
that in order to maximize the probability of a col-
lision, under the current problem settings, ωI can
be set to either: 1) a large value, several times
greater than the mean gust duration or mean pe-
riod between gusts, or 2) a small value closely re-
lated to the mean gust duration and mean period
between gusts. Optimization of ωI would include
collecting the simulated flight data in an offline
setting, under expected environmental conditions
of the friendly UAV to obtain an estimate of col-
lision probabilities w.r.t. intercept window and
friendly swarm size settings, ωI and D, respec-
tively, as shown in Figure 6. The function esti-
mate is saved on the friendly UAV model, which
sets the maximum allowable ωI based on the ad-
versarial swarm’s observed distance. Then, the
optimal window size ωI is obtained by performing
an optimization over the function estimate con-
strained on the maximum intercept window size.

This finding can be used to the friendly swarm’s
advantage when intercepting. If the friendly
swarm observes the adversarial swarm sufficiently
far in advance, a large value for ωI can be used.
However, large ωI can also cause late predictions

by the interception module, as the interception
window requires a greater number of previous ad-
versarial drone’s positions. In such cases, setting
ωI to a small value that corresponds to the local
maxima, similar to the one in Figure 6b, is pre-
ferred. Notably, the findings observed in Figure
6b assume an adversarial drone with a near-linear
trajectory.

4.4 Extension to latent adversarial target selec-
tion and larger adversarial swarms

The aforementioned experimental section as-
sumed a single adversarial UAV moving in a near-
linear fashion, offset by environmental deviations.
The severity of deviation of an adversarial UAV’s
trajectory from a linear one depended purely on
the harshness of the environmental conditions.
However, a more applicable scenario would likely
include a swarm of adversarial UAVs in which the
swarm consists of more than a single drone, in ad-
dition to allowing for non-linear adversarial tra-
jectories. Also, such flight paths are often highly
dependent on the adversarial swarm’s target.

Previously, the adversarial UAV’s target was
fixed throughout all experiments in such a way



(a)

(b)

Fig. 6: Percentage of runs with successful interceptions w.r.t a) wind duration means and b) different choices for interception
window size. In a partially observed scenario, when the model is used to infer an adversarial drone’s path, the percentage
of runs with successful interceptions is depicted by solid lines, while dashed lines were used when full observations of the
adversarial drone were available.

that prevents an interception occurring by chance,
considering the initial friendly swarm’s movement
direction. However, a more appropriate setting

would allow for multiple probable and known ad-
versarial swarm targets, in addition to having a
mechanism of latent adversarial target selection.



Given that the model described in this paper
is highly modular, we can easily exchange and
add specific components that would account for
such, more general behavior of an adversarial UAV
swarm. Experiments on such an extended prob-
lem were not performed due to the significant com-
putational complexity of running numerous simu-
lations under vastly different environmental set-
tings. Such complexity stems from the require-
ment of performing structured learning in addi-
tion to training a per-drone regressor, in the case
of larger adversarial swarms. In the case of la-
tent adversarial target selection, an offline data
collection and classifier training step would be re-
quired, along with training a regressor conditioned
on those targets.

4.4.1 Larger adversarial swarms

Given an adversarial swarm that maintains a
particular internal structure between drones over
time, the current model would likely prove in-
sufficient for the task of interception. In [19], a
swarm trajectory prediction task under partial ob-
servations was resolved using structured learning.
Similarly, a Multi-Target Gaussian Conditional
Random Fields (MT-GCRF) model can be used
to predict the individual locations of adversarial
UAVs under partial observations while simultane-
ously accounting for their spatial structure. Alike
the model in this paper, MT-GCRF also utilizes
a window of previous adversarial UAV positions,
ωM . The underlying regressor used by MT-GCRF
can be any parameterized function that outputs
the current UAV location estimate given its win-
dow of previous positions, ωM . As a result, MT-
GCRF can also be used when non-linear adver-
sarial trajectories are observed by utilizing more
elaborate models.

4.4.2 Latent adversarial target selection

In a more practical setting, adversarial UAV flight
paths are often highly dependent on the swarm’s
underlying target. Such targets are usually latent
from the friendly swarm’s perspective; however,
we are often aware of potential targets in a specific
area. Utilizing powerful supervised classification
algorithms to infer the actual adversarial swarm
target could prove highly beneficial when com-
bined with a trajectory prediction model. Train-

ing such classification algorithms would be done
offline, after collecting various adversarial flight
data in similar-behaving simulated environments.
A critical constraint placed on such classification
algorithms would be having fast inference times as
they are employed in fast-paced environments.

For example, in [8], the authors introduced a
Neural Dynamic Classification (NDC) algorithm,
which utilizes the available training data to learn a
transformation function that transforms the data
such that the probability of correct classification is
increased. Since the parameters of such transfor-
mation functions are established in a way that cre-
ates large margins between clusters and small mar-
gins between classmates, such an algorithm is also
useful for inspecting what adversarial modes of be-
havior would lead to a particular target selection.
In a scenario where the window size, ωM , is large,
inference could turn out to be slow even when ac-
counting for the friendly swarm’s distributed com-
puting power; therefore, NDC works best on rel-
atively small window sizes. Similarly, enhanced
PNNs (EPNN) [9] could be utilized, when used
in conjunction with small window sizes. EPNN’s
classification power over different signal-to-noise
ratio (SNR) levels and train-to-test data ratios
is especially useful if the model is to be used in
unknown environments. Finally, if explainability
and fast model updates are prioritized, a finite el-
ement machine for fast learning (FEMa) [10] can
be used. FEMa has the advantage of evaluating
the certainty of classification and, consequently,
computing a probability map during the inference
phase. In addition to being non-parameterized,
FEMa might also not require a training step if in-
terpolation and partition of unity assumptions are
imposed on the basis functions, thus allowing for
fast model updates.

5 Conclusion

In this study, an interception method that uti-
lizes on-board PID controllers was proposed to in-
tercept an adversarial drone under both full and
partial observation of the adversarial drone’s po-
sitions. The efficacy of the method was assessed
in a virtual environment under different environ-
mental and model settings. When simulated in
over 165,000 flights, the proposed method was able
to achieve successful interception in the baseline



and partially denied scenarios. Additionally, a
parameter space exploration was conducted, the
findings of which supported the hypothesis that
the friendly swarms of greater sizes increases the
efficacy of the proposed method. These experi-
ments reveal an interesting regime for the window
size parameter, suggesting possible criteria for im-
proving the interception efficacy. Future work will
focus on intercepting smart, interactive adversar-
ial agents using a more general interception UAV
model.
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