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Abstract

Recently, a rising number of works has been focusing on tasks in the legal field
for providing references to professionals in order to improve their work efficiency.
Learning legal text representations, being the most common initial step, can
strongly influence the performance of downstream tasks. Existing works have
shown that utilizing domain knowledge, such as legal elements, in text represen-
tation learning can improve the prediction performance of downstream models.
However, existing methods are typically focused on specific downstream tasks,
hindering their effective generalization to other legal tasks. Moreover, these models
tend to entangle various legal elements into a unified representation, overlooking
the nuances among distinct legal elements. To solve the aforementioned limita-
tion, we (1) introduce a generic model, called eVec (legal text to element-related
Vector), based on a triplet loss to learn discriminative representations of legal texts
concerning a specific element, and (2) present a framework eVecs for learning
disentangled representations w.r.t. multiple elements. The learned representations
are independent of each other in terms of elements, and can be directly applied
to or fine-tuned for various downstream tasks. We conducted comprehensive ex-
periments on two real-world legal applications, the results of which indicate that
the proposed model outperforms a range of baselines by a margin of up to 34.2%
on a similar case matching task and 14% on a legal element identification task.
When a small quantity of labeled data is accessible, the proposed model’s superior
performance becomes even more evident.

Keywords:
Legal text representations, Elements, Disentangled representations

1. Introduction

Nowadays, a growing number of research has focused on legal text mining for
tasks such as charge prediction (Long et al., 2019; Zhang et al., 2023; Liu et al.,
2022) and similar case matching (Bhattacharya et al., 2022; Charmet et al., 2022;
Peng et al., 2020), which are becoming vital parts of legal assistant systems. Such
techniques could improve the efficacy of legal experts while also assist people who
lack legal knowledge and are unfamiliar with complex legal procedures to obtain
convenient and high-quality inquiry services.
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Table 1: Crucial legal elements in Chinese private lending cases (Xiao et al., 2019).
Element Examples

贷款人和借款人的性质
(Properties of lender and borrower)

自然人，法人等
(a natural person, a legal person, etc.)

保证类型
(Type of guarantee)

保证，不保证，质押等
(guarantee, no guarantee, pledge, etc.)

借款用途
(Usage of the loan)

事业、个人生活、家庭生活等
(personal life, family life and business, etc.)

As legal assistant systems take fact descriptions of legal cases as input, the first
step in general is to construct a semantic representation of a fact description and
then input it into a model designed for a downstream task. The traditional text
representation methods used for legal text1 analysis focus on extracting relevant
features from a text. For example, Tran et al. (2019) extracted textual features,
such as word, phrase, sentence and summary, and Katz et al. (2017) selected
features such as dates, location, terms and types from case profiles. However, these
feature-based methods are limited to learning literal representations of legal texts,
while ignoring vital legal knowledge in the legal texts.

Recently, legal knowledge, such as law articles or legal elements, has been
integrated into the proposed models (Gan et al., 2021; Long et al., 2019; Zhang
et al., 2023). Compared with law articles2, legal elements can be considered as
more fine-grained domain knowledge, particularly in Chinese legal texts. Legal
elements are features of fact descriptions which might affect legal consequences
(Peng et al., 2020; Xiao et al., 2019; Wang, 2022). Table 1 shows some crucial
legal elements in Chinese private lending cases.

Preserving element information in the representation of a Chinese legal text is
critical for downstream tasks in the legal domain. Note that a Chinese legal text
may contain several elements that are tightly coupled. The existing representation
methods (Peng et al., 2020; Wang, 2022) usually compress the information of
all elements into a unified vector. However, elements may play distinct roles
in different tasks. Using a single vector to represent all elements’ information
may weaken the effect of an individual element. For example, when considering
similar Chinese private lending cases, legal experts are more concerned about
the qualification of a lender such as whether s/he has a proof of loan (e2) or is a
financial institution (e3); than the loan amount (e1) (refer to Fig. 1). Using a single
vector that simply aggregates the information of the three elements may weaken

1The phrase ”legal text” used in this paper is equivalent to “fact description”.
2Law articles are legal principles that are cited by legal professionals to support their arguments.
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Figure 1: The texts highlighted in red are related to the element e1 “借款金额n万元” (loan n ten
thousand yuan. The text highlighted in blue is related to the element e2 “有借贷证明” (have proof
of loan), and the text highlighted in green is related to e3 “贷款人系金融机构” (the lender is a
financial institution). The proposed model identifies the information related to e1, e2, e3 and then
generates three corresponding representations, fe1 , fe2 , fe3 .

the importance of e2 and e3. Hence, the first challenge is how to better represent
the information about an individual element.

The second challenge is how to capture nuances among elements. Some
elements are composed of similar Chinese characters but have distinct meanings.
For instance, two elements, “经济补偿金” (economic compensation) and “经
济赔偿金” (economic damage compensation) are almost the same except for
one character, but have totally different meanings. Since both elements, for the
most part, consist of identical Chinese characters, traditional content-based text
representation methods (Blei et al., 2003) will neutralize the subtle difference and
produce similar representations.

Moreover, when dealing with a relatively small labeled dataset, the model may
be susceptible to overfitting, leading to poor generalization capabilities. However,
annotating legal elements requires annotators to possess a certain level of legal
domain knowledge, which can contribute to increased labor costs associated with
labeling. Hence, the third challenge is how to enhance the model’s generalization
ability in the presence of a limited amount of labeled data.

Specifically, the work’s research goal is to learn disentangled representations
of fact descriptions w.r.t. different legal elements to be able to (1) maximally
preserve the information relevant to a specific element, (2) capture the subtle
differences between different elements, and (3) achieve effective generalization
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even in cases with a limited amount of annotated data.
To mitigate the aforementioned three challenges, we propose a task-agnostic

supervised neural model, named as eVec (legal text to element-related Vector),
based on a triplet loss for learning discriminative embeddings of fact descriptions
w.r.t. a specific element. Given an element e and a fact description x that contains
information about e, the goal is to learn a representation of x which can preserve
more semantic information w.r.t. e. The proposed model can learn a disentangled
representation of a fact description concerning a specific element. Furthermore,
owing to its task-agnostic nature, the proposed model can be utilized for diverse
legal tasks across various domains of law.

For multi-element tasks (see Fig. 1), we design a framework eVecs, which
ensembles multiple eVec models, to learn representations of a fact description
w.r.t. each element independently. The learned representations can be directly
applied to or fine-tuned for downstream tasks. Unlike the existing representation
learning methods (Hu et al., 2018; Kim, 2014; Wang, 2022) which entangle the
information of all elements into one vector, the eVecs framework is capable of
learning representations that not only preserve all elements’ information but also
well separate them. The learned representations are independent of each other
in terms of elements. Additionally, eVecs demonstrates substaintial improvements
when dealing with a limited amount of labeled data per element.

The contributions are summarized as follows:

• To our knowledge, the concept of learning disentangled representations
of fact descriptions has not been explored. We introduce a supervised
neural model eVec based on a triplet loss for learning representations of fact
descriptions. It aims to learn a disentangled representation that maximally
preserves the information relevant to a specific element while omitting
irrelevant element information.

• The learned representations are task-independent and can be directly applied
to multiple tasks or fine-tuned for different downstream tasks.

• The results on two real-world applications, similar case matching and legal
element identification, show that our model outperforms other baselines. The
benefit of our model is even more noticeable when only a small quantity of
labeled data is accessible.
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2. Related work

2.1. Text representation
In the analysis of legal documents, earlier works mainly focused on extracting

textual features of texts (Katz et al., 2017; Liu & Hsieh, 2006; Sulea et al., 2017;
Tran et al., 2019; Yan et al., 2017). However, these methods only capture shallow
textual features. Designing and annotating features require massive human efforts.
Considering the limitations of feature-based methods, recent studies incorporate
legal knowledge into classical deep neural networks. For example, Long et al.
(2019) utilizes legal knowledge as an auxiliary input. Other studies introduce
multi-task frameworks to model the target task and the domain-dependent task
together, such as relevant law article extraction (Feng et al., 2022; Ma et al., 2021;
Yang et al., 2019; Zhang et al., 2023).

A few recent works have taken legal elements into account. For example, Peng
et al. (2020) presents a text matching model based on element extraction. Each
dimension of the element representation is the likelihood that a sentence contains
an element. Hu et al. (2018) adopts an attention mechanism to learn an element
representation, which is obtained by summing weighted word embeddings. Note
that the concept of elements in Zhong et al. (2020) is different from ours, as the
elements they considered are the subject, the object and the motive of a law article.

Some other studies have proposed approaches for the task of legal case re-
trieval (Shao et al., 2020; Chalkidis et al., 2020; Vuong et al., 2022). However, it
is worth noting that most of the cases they investigated stem from common law
systems, where judgments rely on the outcomes of prior case decisions. In contrast,
the legal cases in this study are derived from civil law systems, where judgments
are based on codified legal provisions. As a result, some of these approaches may
not be directly applicable to the datasets used in this study.

Despite the aforementioned advances, the existing works fail to capture the
subtle differences between elements. To deal with these issues, we introduce a
novel model to learn disentangled representations of legal texts w.r.t. elements,
where representations of legal texts containing the same element are closer together
but farther apart from texts not containing it.

2.2. Disentangled representation learning
There has been an increasing interest in disentangled representation learning in

recent years. The objective of disentangled representation learning is to distinguish
the attributes of input data and map them into different independent latent spaces.
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Figure 2: An illustration of the proposed model eVec.

The idea of disentangled representations has been explored first in computer vi-
sion (Chen et al., 2016; Denton & Birodkar, 2017; Mathieu et al., 2016). Recently,
some researchers focused on studying disentangled representations in NLP tasks,
such as text style transfer (Cheng et al., 2020; John et al., 2019; Yang et al., 2018;
Zhu et al., 2022), semantic parsing (Yin et al., 2018) and text generation (Fei et al.,
2022; Wiseman et al., 2018). The most commonly used approach among them is
based on adversarial training. Inspired by the work in Jain et al. (2018), which
proposes to applied adversarial learning on the (dis)similarity triplets of biomedical
abstracts w.r.t. specific aspects, our work extends this approach to the legal domain
to learn element-specific representations of legal texts. The learned representations
are task-independent and can be directly applied to downstream element-related
tasks.

3. Method

In this section, we first provide a description of the proposed model eVec
that maps a fact description to a low-dimensional embedding space w.r.t. one
element, and then present a general framework, eVecs, which learns disentangled
representations of a legal text w.r.t. multiple elements.

3.1. eVec: legal text to element-related vector
The fact description of a legal case describes the history of the dispute and is

composed of several sentences. Assume a fact description x = {w1, ..., wN} and
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an element e, where wt represents the t-th word in x and N is the number of words
in x. The goal is to learn a discriminative embedding fe(x) of x w.r.t. e. We utilize
additional texts to help the model better analyze the information that is relevant to
the element e in x. Namely, let xp represent a sentence containing the element e,
labeled with a positive class, and xn represent a sentence that does not contain any
description relevant to e, labeled with a negative class. The hypothesis is that the
intra-class distance between fe(x) and fe(x

p) is smaller compared to the inter-class
distance between fe(x) and fe(x

n).

3.1.1. Triplet loss
Let ν be the collection of all feasible triplets in the training dataset and let D

denote its cardinality. For the i-th triplet (xi, x
p
i , x

n
i ), the goal of the eVec model

is to ensure that the embedding of xi is closer to the embedding of xp
i than to the

embedding of xn
i , that is,

sim(fe(xi), fe(x
p
i ))− α > sim(fe(xi), fe(x

n
i )), ∀(fe(xi), fe(x

p
i ), fe(x

n
i )) ∈ ν,

(1)
where α is a margin that is applied to make a certain distance between the positive
and negative pairs and sim(fe(xi), fe(x

p
i )) is the cosine similarity between fe(xi)

and fe(x
p
i ).

The ultimate objective is to minimize the loss L,

L =
D∑
i=1

[max(0, α− sim(fe(xi), fe(x
p
i )) + sim(fe(xi), fe(x

n
i )))]. (2)

Due to the margin threshold α, the triplet loss will enforce large distances between
the positive and negative pairs. Other studies (D’Innocente et al., 2021; Wang
et al., 2014) have shown that using triplet loss helps capture nuances among inputs
compared to using contrastive loss (Hadsell et al., 2006).

3.1.2. Triplet generation
How to generate triplets for training turns out to be vital for learning disen-

tangled representations. A sentence may contain several elements. For example,
the sentence underlined in Fig. 1 contains the information about elements e1 and
e2. For a given element e, if xp contains more than one element information,
it is possible that the learned representation contains irrelevant information. To
enforce more effective decoupling of elements, we restrict that xp is a sentence
that is relevant to only one element and xn is a sentence that is not relevant to e.
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For example, in Fig. 1, the sentence highlighted in green is only relevant to e3,
it can be used as xp for generating triplets for e3 and used as xn for generating
triplets for other elements, such as e1. The sentences in black are not relevant
to any element, so they can be used as xn. Note that an element e may involve
multiple circumstances. We then further restrict that xp includes the information
of the same circumstance as x, and xn describes a different circumstance or is not
relevant to e. This generation technique is able to substantially decrease the effect
of other irrelevant information and generate a large quantity of triplets using a
small quantity of labeled data.

3.1.3. Model architecture
Fig. 2 illustrates the architecture of eVec. To train the eVec model, for a given

element e, we first generate triplets (x, xp, xn) w.r.t. e, where x is a fact description
that contains e, xp is a sentence describing e and xn is a sentence not describing
e. Each one of x, xp and xn consist of a sequence of Chinese words which is
independently fed into a word embedding layer. Through the word embedding
layer, each word wi is converted to an embedding zi ∈ Rm, where m is the
dimension of the embedding. Once converted, the embeddings of all words are
stacked in an embedding matrix Z = [z1, ..., zN ]. Many word embedding models,
like Glove (Pennington et al., 2014) or Word2vec (Mikolov et al., 2013), can
be used for this purpose. The corresponding embedding matrices of x, xp and
xn, i.e. (Zx, Zxp , Zxn), are then obtained. Next, the embedding matrices of each
triplet are fed into three parameter-shared encoder networks to learn higher-order
representations (fe(x), fe(xp), fe(x

n)):

fe(x) = Encoder(Zx), fe(x
p) = Encoder(Zxp), fe(x

n) = Encoder(Zxn). (3)

The three encoder networks are initialized using the same weights and updated with
the same gradients. fe(·) ∈ Rh, where h is the dimension of the representation.
Any classical deep neural network can be applied as an encoder network, such
as CNN or LSTM. The training objective of the shared encoder network is to
minimize the triplet loss (Eq. (2)) to ensure that the similarity between fe(x) and
fe(x

p) is larger than the similarity between fe(x) and fe(x
n). Maximizing the

similarity between fe(x) and fe(x
p) encourages the encoder network to focus on

their common semantic information. Since xp contains information that is only
relevant to the specific element e, the model tends to preserve information about e
in fe(x).
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Figure 3: An illustration of the framework eVecs for a multi-element task.

3.2. eVecs: a general framework for a multi-element task
In case a task takes multiple elements into consideration, a good text represen-

tation should preserve all elements’ information and meanwhile well distinguish
them. To achieve this, we present eVecs, a framework that employs multiple eVec
models to learn representations w.r.t. multiple elements.

The framework eVecs (illustrated in Fig. 3) represents an ensemble model that
strives to disentangle elements in a fact description. For a base model eVeci and
an element ei, the training triplet generation procedure is the same as described in
Section 3.1. A sentence x that describes the element ei can be used as x or xp for
training eVeci and used as xn for training other base models.

The training procedures of the base models are independent and can be run in
parallel. Once all base models are trained, given a fact description x, through base
models, the element-related embedding matrix F is obtained as:

F = [fe1(x), ..., fec(x)], F ∈ Rh∗C , fei(x) = eV eci(x), i = 1, 2, ..., C, (4)

where fei(x) is the embedding of x w.r.t. ei, eV eci is the trained base model w.r.t.
ei and C is the number of elements. Then, for a certain downstream task, there
are two options: (1) One can directly apply the representations obtained by the
base models to the downstream task; alternatively, (2) the base models can serve as
feature extraction layers of the downstream task model and be fine-tuned on the
downstream task. The difference between two options is whether the base models
participate in the training process for downstream tasks or not.
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4. Experiments

4.1. Single-element task: similar case matching
In this section, we conducted an experiment on a synthetic Chinese bankruptcy

dataset, to evaluate the effectiveness of the eVec model and the triplets generation
method in a similar case matching downstream task w.r.t. one specific legal element.
Given a triplet containing three fact descriptions (d, d1, d2), the task is to determine
whether d1 is more similar to d w.r.t. one element than d2. If so, then the label of
this triplet (d, d1, d2) is 1, otherwise it is 0.

4.1.1. Bankruptcy dataset
We collected the civil ruling papers on corporate bankruptcy from the National

enterprise bankruptcy information disclosure platform3 and the Shanghai High
People’s Court. The civil ruling documents are mainly composed of three compo-
nents, namely a fact description, relevant law articles and a judgement. In a real
application scenario, a judge finds similar cases as references to assist him to make
a judgment on the basis of the fact description of a case. Therefore, the analysis
was conducted on the fact descriptions.

In the Chinese bankruptcy domain, one important criterion of determining
whether a company goes into dissolution is “petition requirements”. According
to article 2 section 1 of the Enterprise Bankruptcy Law of the People’s Republic
of China, there are two main circumstances for judging whether a company’s
liabilities shall be liquidated. Thus, whether two fact descriptions are similar is
mainly based on the description of the circumstance of “petition requirements”.
We selected 84 fact descriptions that are only relevant to one circumstance and
ignore those including both circumstances. The petition requirements included in
the sentences of each fact description were annotated by legal professionals. For a
given sentence, if it contains information related to “petition requirements” , the
legal professionals labeled which circumstances of “petition requirements” it was
relevant to. Finally, there are 634 sentences relevant to “petition requirements”.

We split the selected fact descriptions using a ratio of 4:1 to generate training
triplets and test triplets respectively. For training, we generated two groups of
triplets, a group of 20,005 s-triplets (sentence-based triplets) and another one of
14,045 f -triplets (fact description-based triplets). As for testing, to resemble a real-
world scenario where only f -triplets are available, 2,525 f -triplets were generated.
The s-triplets were generated by the method described in Section 3.1, and we

3http://pccz.court.gov.cn/pcajxxw/index/xxwsy
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restricted that x is a fact description describing one of the circumstances of the
petition requirements such that xp is a sentence describing the same circumstance
as the one in x while xn is a sentence describing the another circumstance. Instead
of limiting xp and xn to be sentences describing different elements, the f -triplets
were generated in a traditional way where xp is a fact description containing the
same element as x and xn is a fact description relevant to other elements. The
number of f -triplets is less than that of s-triplets as there are less fact descriptions
than sentences.

4.1.2. Experimental setup
To demonstrate the robustness and effectiveness of the eVec model, we con-

sidered six basic encoder networks. TextCNN (Kim, 2014) with a window size
of the convolution filter in {3,4,5} and 128 convolution filters of different width;
CNN (LeCun et al., 1998) with one layer of 128 filters and window size of 5;
LSTM (Hochreiter & Schmidhuber, 1997) with 128-dimensional hidden states
(same below) and an l2 regularization penalty of 1e-3; LSTM+Attention (Yang
et al., 2016); Bi-LSTM (Graves & Schmidhuber, 2005) and Bi-LSTM+Attention
(Zhou et al., 2016).

The documents were preprocessed by deleting stop words, punctuation symbols,
and words occurring in less than 3 documents, and removing the basic information
of a bankrupt company, such as enterprise’s address, legal representative and
organization code. All documents were tokenized using the jieba4 toolkit. We only
preserved nouns, adjectives and verbs. The embeddings of words were initialized
using representations pre-trained on the dataset of Chinese Wikipedia (Li et al.,
2018). The size of an embedding is 300. Some professional words in the legal
field may not have corresponding representations in the pre-trained model. One
straightforward solution is to average the embeddings of all characters in the word
to represent it. For example, a word “借条”(receipt for a loan), which is very
common in the Chinese bankruptcy application documents but is not among the
pre-trained words, can be represented by taking the average of the embeddings of
“借” and “条”. To balance the length of sentences and full text, documents were
truncated to a fixed length (400).

During the training process, we used Adam (Kingma & Ba, 2015) to optimize
the model parameters with a batch size of 32 and a learning rate of 0.001 and the
epoch was selected as 20. The margin α was specified as 1 and the initialization

4https://github.com/fxsjy/jieba
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Table 2: Classification results obtained by the eVecb and eVec models using six different encoder
networks. eVecb stands for a “basic” variant of eVec that uses fact descriptions to generate triplets.

Encoder network Accuracy Precision Recall F1-score
eVecb eVec eVecb eVec eVecb eVec eVecb eVec

CNN 0.686 0.871 0.761 0.927 0.660 0.832 0.710 0.877
TextCNN 0.608 0.799 0.638 0.888 0.602 0.753 0.620 0.815
LSTM 0.472 0.599 0.520 0.757 0.474 0.568 0.496 0.649
LSTM+Att 0.566 0.678 0.604 0.741 0.561 0.658 0.582 0.697
Bi-LSTM 0.577 0.795 0.678 0.893 0.564 0.746 0.616 0.813
Bi-LSTM+Att 0.487 0.819 0.610 0.923 0.490 0.764 0.543 0.836

Table 3: Classification results obtained by the best-performing (CNN-based) eVec and the text
representation alternatives.

Model Accuracy Precision Recall F1-score
TF-IDF 0.585 0.587 0.585 0.586
Word2vec 0.560 0.594 0.556 0.574
LDA 0.621 0.647 0.614 0.630
LSA 0.570 0.609 0.594 0.601
FastText 0.635 0.616 0.639 0.628
ABAE 0.640 0.617 0.647 0.632
BERT-PLI 0.573 0.523 0.581 0.551
Paraformer 0.601 0.612 0.598 0.605
c-DSSM 0.762 0.857 0.720 0.783
BERT 0.668 0.688 0.661 0.674
SCMKD 0.649 0.682 0.640 0.660
eVec 0.871 0.927 0.832 0.877

of other parameters is random. The performance was assessed using accuracy,
precision, recall and F1-score.

4.1.3. Effectiveness of the triplet generation strategy
To investigate if the proposed triplet generation strategy is helpful in learning a

representation regarding a specific element, we compared the eVec model with a
basic variant eVecb. The difference is that the eVec model is trained with s-triplets
and the eVecb model is trained with f -triplets.

Table 2 shows the classification results obtained by the eVec and eVecb models
using 6 different encoder networks. It shows that the eVec model made substantial
improvements compared to eVecb w.r.t. different metrics. For example, the eVec
model achieved 19.4% higher accuracy on average, 21.9% higher precision, 16.2%
higher recall and 18.7% higher F1-score. The reason is that xp and xn used in
eVecb are composed of the entire texts, which may contain other irrelevant element
information. Among the six different encoder networks, CNN achieves the best
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Figure 4: Comparison of loss functions.

performance. This is due to the relatively small amount of selected fact descriptions.
Therefore, the complex encoders such as LSTM, are prone to overfitting.

4.1.4. Effectiveness of the eVec model
Next, we compared the eVec model with six unsupervised text representation

methods including TF-IDF, Word2vec, LDA (Blei et al., 2003), LSA (Dumais,
2004), FastText (Mikolov et al., 2018) and ABAE (He et al., 2017), and five super-
vised text representation models, BERT-PLI (Shao et al., 2020), Paraformer (Nguyen
et al., 2022), c-DSSM (Shen et al., 2014), BERT (Devlin et al., 2019) (initialized
with the “bert-base-chinese” pretrained model from transformers5) and SCMKD
(Peng et al., 2020) (see Table 3). The supervised methods were trained using
f -triplets to minimize the triplet loss. According to the results, our method out-
performs both unsupervised and supervised methods. Specifically, the eVec model
achieved 23.1%-31.1% higher accuracy and 24.5%-30.3% higher F1-score com-
pared with the unsupervised methods, and obtained 10.9%-34.2% higher accuracy
compared with the supervised methods. It is worth noting that BERT-PLI and
Paraformer exhibit lower performance on this task. This is most probably due to
the two models having architectures and training processes that might not be well-
suited for our specific dataset. Tables 2 and 3 together demonstrate the effectiveness
of the eVec model.

5https://github.com/huggingface/transformers
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Figure 5: Visualization of word weights. If a word was assigned a larger weight, the corresponding
color is darker.

4.1.5. Effectiveness of the triplet loss
Furthermore, we compared the triplet loss with the contrastive loss (Hadsell

et al., 2006). Each s-triplet is decomposed into two pairs, (x, xp) and (x, xn),
which are the inputs of the contrastive loss. The contrastive loss aims to enforce
representations of texts that contain the same element to be similar, or otherwise
dissimilar. The triplet loss has a similar goal but it considers the relative similarity
between positive text and negative text. For a text, the triplet loss enforces that
its similarity to a positive text is higher than its similarity to a negative text by at
least a certain threshold. Thus, the triplet loss can better capture the fine-grained
differences between elements. For both loss functions, we used CNN as an encoder.
Fig. 4 displays the comparison results of using the different loss functions. It
indicates that using triplet loss obtains much better results than using contrastive
loss.

4.1.6. Visualization of word importance
Fig. 5 shows the weights of words assigned by the LSTM-Attention model. If

the weight of a word is larger, then the corresponding color is darker. As expected,
the weights of words learned by the eVec model strongly correspond to the target
element. Words related to “petition requirements”, such as “清偿” (solvency), “债
务” (debt), “财产” (property), are assigned relatively larger weights. This implies
that the eVec model is capable of focusing on salient words describing the specific
element and the learned text representation could maximally preserve the important
information about the target element.
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Table 4: The statistics of the three real-world datasets.
Datasets Loan contracts Labor dispute Marriage & family

sentences 5,513 6,698 9,445Training
s-triplets 111,467 68,182 96,399

Testing sentences 1,958 1,574 2,920

Table 5: F1Ave-scores obtained by all models for the task of legal identification on the three
real-world datasets.

Methods Loan contractsLabor disputeMarriage & family
CNN 0.80±0.02 0.83±0.02 0.87±0.02
TextCNN 0.76±0.02 0.75±0.02 0.85±0.02
CNN+GRU 0.82±0.03 0.85±0.01 0.89±0.02
LSTM 0.75±0.03 0.78±0.02 0.86±0.02
LSTM+Att 0.76±0.02 0.78±0.01 0.86±0.01
Bi-LSTM 0.81±0.02 0.84±0.01 0.89±0.01
Bi-LSTM+Att 0.80±0.01 0.84±0.01 0.88±0.01
ATAE-LSTM 0.81±0.01 0.84±0.01 0.89±0.01
BERT 0.83±0.01 0.88±0.01 0.90±0.01
ELECTRA 0.81±0.01 0.82±0.01 0.88±0.01
Hu et al. 0.81±0.02 0.85±0.01 0.87±0.01
AttentionXML 0.82±0.01 0.86±0.01 0.89±0.01
eVecs 0.85±0.01 0.89±0.01 0.91±0.01

4.2. Multi-element task: legal element identification
We then applied the eVecs framework to the legal element identification task.

The goal is to disentangle the information of each element in a sentence so that
the downstream model can better predict the existence of each element. Given
a sentence s, the legal element identification task aims to predict the labels of
elements y = {y1, ..., yc}, where yl ∈ {0, 1} represents the label of an element el
and c is the total number of element categories.

4.2.1. Real-word datasets
We used a publicly available dataset from the CAIL20196 competition. Each

record is a sentence of a fact description, and the contained elements in each
sentence were labeled by professionals with legal background. A sentence may
include the information of multiple elements, and meanwhile there are many
sentences that are not associated with any element. The dataset covers three
areas, including loan contracts, labor disputes, and marriage and family. For each
dataset, we selected the top 10 high-frequency elements as labels. All sentences

6http://cail.cipsc.org.cn/
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were divided into training and testing sets. Using sentences in the training set, we
constructed triplets to train each base eVec model w.r.t. an element independently.
The detailed statistics of three datasets are listed in Table 4.

4.2.2. Experimental setup
We compared the classification performance of the eVecs framework against 11

baselines: CNN, TextCNN, CNN+GRU (Lai et al., 2015), LSTM, LSTM +Attention,
Bi-LSTM, Bi-LSTM+Attention, ATAE-LSTM
(Wang et al., 2016) with 300-dimensional aspect embeddings and hidden layer
of size 128, BERT, ELECTRA (Clark et al., 2020) (itialized with the “chinese-
legal-electra-base-discriminator” pretrained model from the “transformers” pack-
age7), AttentionXML (You et al., 2019), and Hu et al.(Hu et al., 2018) with 128-
dimensional hidden states. For baselines that are already used in Section 4.1, the
same hyperparameters are set here. We used the same text pre-processing tech-
niques as described in Section 4.1.2. For the baselines, the initial inputs are word
embeddings, then the learned representations of sentences are input into a fully
connected layer with sigmoid activation, the output of which is the probability of
each category. For this task, we did not compare our approach with BERT-PLI and
Paraformer, which are specifically designed for processing long case documents,
as the text utilized in this task consists of individual sentences. It is important to
note that when considering single sentences, these two models have architectures
similar to that of BERT.

As for the eVecs framework, we used BERT as encoder network for a base
model eVec to learn text representations for individual elements, as it performed
the best among all baselines. The maximum input length of BERT is set to 512,
yet most sentences in this task are shorter than 512 characters. Consequently, the
input length limitation of BERT does not impact the performance in this task. Here,
the CNN is not the best performing encoder, the reason being that the sizes of
the datasets in this task are much larger, therefore more complex models (such
as BERT) tend to perform better due to their larger modeling capacity. Then, we
combined 10 base models using a multi-label classifier. During the training process,
the parameters of all base models were fine-tuned. The input of the multi-label
classifier was the concatenation of the outputs of all base models. For the classifier
architecture, the fully connected layer’s dimension was configured to 128 while
the other parameters were initialized randomly. We trained all models using Adam

7https://github.com/huggingface/transformers
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Figure 6: F1ave-scores obtained by all models using different amounts of training data from the
Loan dataset.

optimizer and the learning rate and batch size were initialized to 0.001 and 32. The
performance was evaluated by F1Ave-score which is the average of micro-average
and macro-average F1-score. Each model was run 10 times and the mean scores
and standard deviations were reported.

4.2.3. Effectiveness of the eVecs framework
Table 5 shows the classification results regarding F1ave-scores. One can ob-

serve that eVecs outperforms the alternatives on all three datasets, which manifests
the effectiveness of the eVecs framework. For example, compared with the other
baselines, the eVecs framework yielded 2%-9% higher F1Ave on the loan contracts
dataset, 1%-14% on the labor dispute dataset, and 1%-6% on the marriage and
family dataset, respectively. This proves that the text representations learned by
the eVecs framework can better capture the properties of each element. We noticed
that the lifts made by eVecs on the marriage dataset are relatively small compared
to other alternatives. The reasons are that the size of labeled marriage data is larger
than other two datasets and the number of sentences that are relevant to only one
element on the marriage dataset is extremely small. Therefore, when generating
triplets for the marriage dataset, we do not restrict that xp is only relevant to one
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(a) (b)

Figure 7: t-SNE plots of the disentangled element in e1 space. The red dots represent sentences
containing element e1, while the purple dots represent sentences containing element e2.

element, which essentially decreases the performance of eVecs.

4.2.4. Effectiveness w.r.t. data size
We next conducted an experiment to assess the validity of the models using

different sizes of training data. We selected 250, 500, 1000, and 3000 sentences
from the original Loan dataset to form training datasets of different sizes. Fig. 6
shows the F1ave-scores obtained by all models. One can observe that eV ecs
consistently outperforms all alternatives under different sizes of training data.
Especially if the training set is tiny, the superiority of eV ecs is more clear. For
example, when the data size is 250, the performance of BERT (from Table 5)
drops sharply, while our model can maintain stable performance and improve the
accuracy by up to 66%. This indicates that eV ecs can obtain satisfactory results
using just a modest quantity of labeled data, which significantly reduces the cost of
labeling.

4.2.5. Latent space visualization
We also examined whether elements are disentangled in the latent space by

choosing two elements, assignment of creditor’s rights (e1) and the amount of
money borrowed (e2), from the loan contracts dataset, and retained 1,933 sentences
in the test set. We used t-SNE (Maaten & Hinton, 2008) to convert the 128-
dimensional learned representations regarding e1 into a two-dimensional space,
and visualize them in Fig. 7. The red dots in Fig. 7(a) represent sentences containing
the element e1, and the purple dots in Fig. 7(b) represent sentences containing
the element e2. The observation is that the red dots in Fig. 7(a) are clustered
together and are clearly distant to the rest of the dots, which suggests that the
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representations of the sentences that contain the same element are more similar
in the corresponding element space compared to the ones that include a different
element. Moreover, Fig. 7(b) shows that in the latent space of the element e1,
sentences containing e2 (purple dots) are closely intertwined with sentences that
include neither e1 nor e2 (blue dots). Note that some sentences containing e2 (i.e.
some of the purple dots) are close to sentences containing e1. We have separately
examined those sentences and found that they are indeed sentences containing
both e1 and e2. It can be inferred that in the element e1 space, representations
related to e1 can be well separated from representations not relevant to e1. Lastly,
Fig. 7(a) and Fig. 7(b) together demonstrate the base model’s capability of learning
disentangled representations.

4.3. Discussion
In this section, we conduct a detailed analysis and discussion of our model.

Compared with existing models, the advantages of our model are as follows: 1) It
possesses the capability to learn representations w.r.t. specific legal elements; 2)
It is task-agnostic and can be applied with flexibility across various downstream
tasks. 3) The learned representations can be directly applied to or fine-tuned on
downstream tasks. There are also some limitations of the proposed model: 1)
Relying on labeled elements. Although the proposed model and its variant rely
on labeled elements, the experiments in Section 4.2.4 have demonstrated that
even a small amount of labeled data can yield relatively good performance, thus
significantly reducing labeling costs. 2) Model complexity. Training encoders w.r.t.
specific elements may initially increase the time complexity of the model, however,
once these encoders are trained, they can be directly applied to multiple tasks in the
same domain or fine-tuned on a small amount of data. 3) Resource consumption
during training and inference. The resource consumption of our proposed model is
contingent on the encoder. Assume that the complexity of the selected encoder is
O(a), and there are C elements, then the total complexity of proposed framework
is O(a ∗ C). Notably, the training of C element encoders can be conducted in
parallel to reduce runtime.

5. Conclusion

In this paper, we proposed the eVec model to learn discriminative represen-
tations of Chinese legal texts w.r.t. a given element and presented the eVecs
framework to learn disentangled text representations w.r.t. multiple elements. Ex-
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periments on two real-world applications demonstrate that the eVec model and the
eVecs framework can achieve substantial improvements over their alternatives.
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