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Abstract

A broad range of high impact applications involve learning a predictive model in a temporal network environ- AST-SE states:
ment. In weather forecasting, predicting effectiveness of treatments, outcomes in healthcare and in many other e State 1 (no change)
domains, networks are often large, while intervals between consecutive time moments are brief. Therefore, models M
are required to forecast in a more scalable and efficient way, without compromising accuracy. The Gaussian Con- @(t) ( G(t+1)) _ Z w%—m @(;;—1) (G(t+1))
ditional Random Field (GCREF) is a widely used graphical model for performing structured regression on networks. 1 = ’
However, GCREF 1s not applicable to large networks and it cannot capture different network substructures since it . m=
considers the entire network while learning. In this study, we present the Adaptive Skip-Train Structured Ensemble o State 2 (reweight)
(AST-SE), a sampling-based structured regression ensemble for prediction on top of temporal networks. Capable M
) .. : .. : : () ~(t+1)y _ t) (t=1) ~(t+1)
of automatically skipping the entire or some phases of the training process, AST-SE outperforms its competitors, @2 (G ) — Wy, O, (G ),
while learning in a more efficient, scalable, and potentially more accurate manner. m—1
e State 3 (retrain + reweight)
Introduction M= M
t t) (1 t)  (t—1
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e Problem statement: m=1 m=M*
_ A network G(t) = (V<t>, gl x1) y<t>) is observed over time.
- Objective: Given an unobserved network G{!T1) = (V<t+1>, g+l X@H)), predict the response Results
variable at each node y<t+1> .
. Experiments were performed on:
e Graphical Models: :
. . . o 1) synthetically generated temporal networks
- Commonly used to predict the response at each node in one or multiple upcoming time steps. .
, 2) gene expression network [3] - a real-world temporal network
- Retrained at each step
e Challenges: Experiments on synthetic temporal networks
- Time for prediction 1s limited e Nodes: 10,000 input-output pairs
- High Computational and space complexity e Structure: generated using an Erdés-Rényi random graph model
e Goal: Forecast in a more scalable and efficient way, without compromising accuracy. e Task: predict the output values at the next time step
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A GCRF [1,2] models the conditional distribution: o d 5 o B s |
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e To predict the outputs for all nodes at time step ¢ + 1, one can train a single GCRF or even a GCRF AST-SE 15.38 + 28.06 o oWeE 1 1550 3 L o TweE ]
bl del at ti ; o5l . . . o AT WSE  217.14 & 7.12 N L
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e Repetitive retraining at each time step can be redundant as data distributions are often similar in o o
consecutive time steps. #1: one data distribution change #2: data distribution changes more frequently

e To overcome this issue, AST-SE: Real-World Application: Influenza Virus Network Prediction

- employs multiple graphical models in order to learn different relationships using network sub-

e Data: Infuenza A virus subtype H3N2 network observed over time (16 hours/steps)
structures

e Nodes: 12,032 genes

e Features: expression values from 3 previous time steps

- detects changes 1n a network once they occur and adapts accordingly

t—1 t

e Targets: expression values at the current time step

Validation Graph Training Graph

e Structure: similarities between gene expressions

e Task: predict the expression values at the next time step
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e Efficiency: AST-SE is ~140 and ~4.5 times faster than GCRF and ensemble-based alternatives,

respectively, when its components are run in parallel on the H3N2 Virus Influenza network.

State selection: e Scalability: AST-SE focuses only on partial views of a network, hence it is scalable as the network

@ e :
size expands.

val

Model learned  Evaluate on e Accuracy: AST-SE obtains a ~34-41% smaller average error (MSE) when compared against al-
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att — 1 () wA ternatives on the H3N2 network.
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