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1. Abstract

A broad range of high impact applications involve le-
arning a predictive model in a temporal network envi-
ronment. In weather forecasting, predicting effective-
ness of treatments, outcomes in healthcare and in many
other domains, networks are often large, while intervals
between consecutive time moments are brief. There-
fore, models are required to forecast in a more scala-
ble and efficient way, without compromising accuracy.
The Gaussian Conditional Random Field (GCRF) is a
widely used graphical model for performing structured
regression on networks. However, GCRF is not appli-
cable to large networks and it cannot capture different
network substructures (communities) since it considers
the entire network while learning. In this study, we pre-
sent a novel model, Adaptive Skip-Train Structured En-
semble (AST-SE), which is a sampling-based structured
regression ensemble for prediction on top of temporal
networks. AST-SE takes advantage of the scheme of en-
semble methods to allow multiple GCRFs to learn from
several subnetworks. The proposed model is able to au-
tomatically skip the entire training or some phases of the
training process. The prediction accuracy and efficiency
of AST-SE were assessed and compared against alter-
natives on synthetic temporal networks and the H3N2
Virus Influenza network. The obtained results provide
evidence that (1) AST-SE is ∼140 times faster than
GCRF as it skips retraining quite frequently; (2) It still
captures the original network structure more accurately
than GCRF while operating solely on partial views of the
network; (3) It outperforms both unweighted and weigh-
ted GCRF ensembles which also operate on subnetworks
but require retraining at each timestep.

2. Problem statement

• A network G(t) = (V (t), E(t),X(t),y(t)) is observed
over time.

• Objective:

- Given an unobserved network G(t+1) =
(V (t+1), E(t+1),X(t+1))

- Predict the response variable at each node y(t+1)

• Graphical Models:
- Commonly used to predict the response at each node
in one or multiple upcoming time steps.

- Retrained at each step
• Challenges:

- Time for prediction is limited
- Computational and space complexity is large

• Goal: Forecast in a more scalable and efficient way,
without compromising accuracy.

GCRF models the conditional distribution:
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• To predict the outputs for all nodes at time step, one

can train a single GCRF or even a GCRF ensemble
model at time step.

• Repetitive retraining at each time step can be redun-
dant as data distributions are often similar in conse-
cutive time steps.

• To overcome this issue, AST-SE:
- employs multiple graphical models in order to learn
different relationships using network sub-structures

- detects changes in a network once they occur and
adapts accordingly
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Figura 1: Imbalanced time-series BirdChicken dataset
from UCR time-series dataset archives

3. Background: Time-series Classificaiton

Dar uma ideia compacta da metodologia ou forma de
abordagem da pesquisa, bem como o projeto foi desen-
volvido.

Let binary images X and Y be defined as a subset of
the image domain M ⊂ Zn or Rn (usually n = 2).
Definition 1 A binary granulometry is a set of ope-
rators {αr} with r from some ordered set Λ (usually
Λ ⊂ R or Z), with the following three properties

αr(X) ⊂ X (2)
X ⊂ Y ⇒ αr(X) ⊂ αr(Y ) (3)

αr(αs(X)) = αmax(r,s)(X), (4)

for all r, s ∈ Λ.
Definition 2 The pattern spectrum sα(X) obtained by
applying granulometry {αr} to a binary image X is de-
fined as

(sα(X))(u) = −∂A(αr(X))

∂r

∣∣∣∣
r=u

(5)

in which A(X) is a function denoting the Lebesgue me-
asure in Rn.
In the case of discrete images, and with r ∈ Λ ⊂ Z,
this differentiation reduces to

(sα(X))(r) = #(αr(X) \ αr+(X)) (6)
= #(αr(X))− #(αr+(X)), (7)

with r+ = min{r′ ∈ Λ|r′ > r}, and #(X) the numnber
of elements of X .
The opening transform [?] ΩX of a binary image X for
a granulometry αr is

ΩX(x) = max{r ∈ Λ|x ∈ αr(X)} (8)

The pattern spectrum of a binary image X using granu-
lometry {αr} is the histogram of ΩX obtained with the
same size distribution [?], disregarding the bin for grey
level 0.

Figura 2: Opening transform with {αr} as in Fig. 1:
(left) original image; (right) opening transform (contrast
stretched for clarity).

4. Proposed method: Cost sensitive
Time-series classification

Dar uma ideia compacta da metodologia ou forma de
abordagem da pesquisa, bem como o projeto foi desen-
volvido.
Pattern spectra only retain the amount of detail present
at scale r. This can be amended by computing some
parameterization of the spatial distribution in an image
αr(X) \ αr+(X) as a function of r.

Definition 3 Let M(X) be some parameterization of
the spatial distribution of detail in the image X . The
spatial pattern spectrum SM,α is then defined as

(SM,α(X))(r) = M(αr(X) \ αr+(X)). (9)

An obvious parameterization of the spatial distribution
is through the use of moments. Focusing on the case of
2-D binary images, the moment mij of order ij of an
image X is given by

mij(X) =
∑

(x,y)∈X
xiyj. (10)

The spatial moment spectrum Smij,α of order ij is

(Smij,α(X))(r) = mi,j(αr(X) \ αr+(X)). (11)

For i = 0 and j = 0 we obtain the standard pattern
spectrum. For each r, (Smij,α(X))(r) is just the mo-
ment of an image, therefore, derived parameters such
as coordinates of the centre of mass, (co-)variances,
skewness and kurtosis of the distribution of details at
each scale can be computed easily. We can then de-
fine pattern mean spectra, pattern (co-)variance spec-
tra, pattern kurtosis spectra, etc. The pattern mean-x
and variance-x spectra (Sx̄,α and Sσ(x),α) are defined as:

Sx̄,α =
Sm10,α

Sm00,α
(12)

and

Sσ(x),α =

√
Sm20,α

Sm00,α
− Sx̄,α. (13)

These two are shown in Figures 3 and 4. Note that
these definitions hold only where (Sm00,α(f ))(r) ̸= 0.
For all other values of r they will be defined as zero.
Further post-processing can be done to compute central
moments and moment invariant from pattern moment
spectra [?, 2].

5. Learning Algorithm: CS-LTS

6. Results and Discussion

Verificar os principais resultados obtidos de acordo com
os objetivos propostos.

Nacken [?] derived an algorithm for computation of pat-
tern spectra for granulometries based on openings by
discs of increasing radius for various metrics, using the
opening transform. After the opening transform has
been computed, it is straightforward to compute the
pattern spectrum:
• Set all elements of array S to zero
• For all x ∈ X increment S[ΩX(x)] by one.
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Abstract
A broad range of high impact applications involve learning a predictive model in a temporal network environ-

ment. In weather forecasting, predicting effectiveness of treatments, outcomes in healthcare and in many other
domains, networks are often large, while intervals between consecutive time moments are brief. Therefore, models
are required to forecast in a more scalable and efficient way, without compromising accuracy. The Gaussian Con-
ditional Random Field (GCRF) is a widely used graphical model for performing structured regression on networks.
However, GCRF is not applicable to large networks and it cannot capture different network substructures since it
considers the entire network while learning. In this study, we present the Adaptive Skip-Train Structured Ensemble
(AST-SE), a sampling-based structured regression ensemble for prediction on top of temporal networks. Capable
of automatically skipping the entire or some phases of the training process, AST-SE outperforms its competitors,
while learning in a more efficient, scalable, and potentially more accurate manner.

Introduction
• Problem statement:

- A network G(t) = (V (t), E(t),X(t),y(t)) is observed over time.
- Objective: Given an unobserved networkG(t+1) = (V (t+1), E(t+1),X(t+1)), predict the response

variable at each node y(t+1)

•Graphical Models:
- Commonly used to predict the response at each node in one or multiple upcoming time steps.
- Retrained at each step

•Challenges:
- Time for prediction is limited
- High Computational and space complexity

•Goal: Forecast in a more scalable and efficient way, without compromising accuracy.

Gaussian Conditional Random Fields
A GCRF [1,2] models the conditional distribution:

P (y(t)|X(t)) =
1
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Methodology
• To predict the outputs for all nodes at time step t+ 1, one can train a single GCRF or even a GCRF

ensemble model at time step t.
• Repetitive retraining at each time step can be redundant as data distributions are often similar in

consecutive time steps.
• To overcome this issue, AST-SE:

- employs multiple graphical models in order to learn different relationships using network sub-
structures

- detects changes in a network once they occur and adapts accordinglyIMAGE:
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AST-SE states:
• State 1 (no change)
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Results
Experiments were performed on:
1) synthetically generated temporal networks
2) gene expression network [3] - a real-world temporal network

Experiments on synthetic temporal networks
•Nodes: 10,000 input-output pairs
• Structure: generated using an Erdős-Rényi random graph model
• Task: predict the output values at the next time stepScenario #1: one data distribution change Scenario #2: data distribution changes more frequently

#1: one data distribution change #2: data distribution changes more frequently

Real-World Application: Influenza Virus Network Prediction
•Data: Infuenza A virus subtype H3N2 network observed over time (16 hours/steps)
•Nodes: 12,032 genes
• Features: expression values from 3 previous time steps
• Targets: expression values at the current time step
• Structure: similarities between gene expressions
• Task: predict the expression values at the next time step

• Data: Infuenza A virus subtype H3N2 network observed over time (16 hours/steps)
• Nodes: 12,032 genes

– Features: expression values from 3 previous time steps
– Targets: expression values at the current time step

• Structure: similarities between gene expressions
• Task: predict the expression values at the next time step

Selected AST-SE states.

Conclusions
• Efficiency: AST-SE is ∼140 and ∼4.5 times faster than GCRF and ensemble-based alternatives,

respectively, when its components are run in parallel on the H3N2 Virus Influenza network.
• Scalability: AST-SE focuses only on partial views of a network, hence it is scalable as the network

size expands.
•Accuracy: AST-SE obtains a ∼34-41% smaller average error (MSE) when compared against al-

ternatives on the H3N2 network.
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