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Introduction

The main challenge of this research is to nurture the idea of
ensemble-based classification by combining well-known ensemble
generation methods bagging and boosting. Since the former re-
duces variance, while the latter ameliorates overfitting, the outcome
of a multi-model that combines both strives towards a compre-
hensive net-balancing of the Bias-Variance trade-off (or dilemma).
To further improve this, we alter the bagged-boosting scheme by
introducing collaboration between the multi-model’s constituent
learners at various logical levels. The ultimate outcome represents
collaborative bagging of boosting ensembles. The aforementioned
collaboration is delivered in two flavors/variants: during or after
the boosting process. These collaborative approaches to combining
ensembles present a novel complex interactive classification scheme.
Applied among a crowd of classification ensembles, they introduce
a new bi-level interactive multi-model. In our approach, the un-
derlying base ensembles can improve their quality by collaborating
with each other, or through their constituent components (weak
learning models). In addition, through voting, they can reach a
joint compromise in order to generalize, i.e. infer on unobserved
data. These complex ensemble principles characterize and encom-
pass the basis of our proposed model.

Methods

Suppose a single boosting [1] ensemble consisting of ST weak learn-
ers is reorganized as a subbagged ensemble of S boosting ensembles,
each containing T weak learners. Subbagging, which is a variant
of Bootstrap Aggregation (Bagging) [2], aggregates models trained
on randomly drawn sub-samples without replacement (thus pro-
ducing smaller subsets that the training dataset itself), and paves
the road to collaborative information exchange. We introduce two
collaborative schemes between boosting ensembles: (1) during gen-
eration/training of boosters and (2) after boosters are trained.
There are two major benefits of collaboration. First, it refreshes
the data fed to each individual booster and allows it to observe
and learn instances that were previously unobserved. Second, it
potentially aids the process of finding the optimal training subsets
which is considered to be an NP-Hard combinatorial problem. Al-
though, the collaboration itself seems promising and the benefits
above are assumptive, it ought to be supported by computational
learning theory. For this purpose, we link it to existing stability
theory, most notably established by Bousquet and Elisseeff [3,4],
henceforth resulting in two collaboration flavors: M-CLB and C-
CLB. We have tested our approach for collaborative bagging of
boosting ensembles with different boosters, but here we report our
findings only for Gentle Boost. The purpose of this is the fact that
Gentle Boost is intended to terminate the training process with a
lower risk of overfitting to the training data and to reduce the noise
susceptibility. Moreover, it has been observed that it outperforms
other boosters [1], thus eliminating the need of comparison with
them.

Margin-Based Collaboration (M-CLB)
Operates among weak learners in the Gentle Boost ensembles, dur-
ing boosting.

Cumulative Collaboration (C-CLB)
Operates among prediction-ready (trained) Gentle Boost ensem-
bles by repetitive training.

It is worth noting that both strive to improve the upper bounds
of the overall generalization error. M-CLB and C-CLB provide a
tighter, and eventually lower upper bound based on the exponential
and classification loss functions respectively.

Theorem 1 (Generalization error upper bound for Subbagged
Gentle Boost). Assume that the loss function ` is B-Lipschitzian,
and 0 ≤ `(ΦX , z) ≤M , for all z ∈ Z , where ΦX is the output of a
subbagging algorithm whose base machine is Gentle Boost. More-
over, assume that subbagging is done by sampling S sets of size
p < N from some X ∈ ZN uniformly and without replacement.

Methods

Let the weak learning algorithm A have (pointwise) hypothesis
stability βw with respect to ` and let ε∗ = WeakD(A)/2 > 0. Then,
for sufficiently large p, for all T , for Subbagged Gentle Boost in T
rounds with probability at least 1 − δ over the random draw of
X ∼ DN ,

R(ΦX ) ≤ Remp(ΦX ) + 2Bβp
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where βp is the stability of the base machine (a Gentle Boost en-
semble) and is evaluated as a function of the weak learner’s stability
βw as in [5], i.e.

βp = 2
N
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Theorem 2 (Classification-loss-oriented upper generalization er-
ror bound of Subbagged Gentle Boost). Let `1(ΦX , z) be a 1-
Lipschitzian classification loss function, for all z ∈ Z , where ΦX
is the outcome of a real-valued Subbagged Gentle Boost consisted
of S base boosting ensembles. Then, for any N ≥ 1, and any
δ ∈ (0, 1), with probability at least 1− δ over the random draw of
a training set X ,

R(ΦX ) ≤ R1
emp(ΦX ) + 4ηβp + (8ηNβp + 1)
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where R1
emp(ΦX ) is the empirical error w.r.t. `1(ΦX , z) and η =

p/N .

Why CLB Approaches Work

Lower upper bound
Theorem 3 (Monotonic minimization of the exponential loss by
Gentle Boost). Let t be the current round of boosting and let F (x)
be the outcome of a Gentle Boost algorithm from the previous t−1
rounds of training on a dataset X ∈ ZN . Assume that ft(x) is
the outcome of a real-valued weak learning algorithm, added to the
ensemble, then with respect to the exponential loss,

Σp
i=1e

−yi(F (xi)+ft(xi)) ≤ Σp
i=1e

−yiF (xi).

Theorem 4 (M-CLB yields almost-everywhere lower empirical
exponential loss of Gentle Boost). Let t be the current round of
Gentle Boost with an outcome Ft,X (x) = Σt

s=1fs,X (x) and assume
that M-CLB is injected after training ft,X (x), i.e. between rounds
t and t+ 1, yielding fht,X ′ and F h

t,X ′, respectively. Then, with a high
probability of ω, M-CLB yields a lower empirical Gentle Boost error
RM−CLB
emp (Ft+1,X ′) at round t + 1 with respect to the exponential

loss `(Ft+1,X ′, zi), zi ∈ X ′, or

RM−CLB
emp (F h

t,X ′ + ft+1,X ′,X ′) ≤ Remp(Ft,X + ft+1,X ,X ),

ω = P
Σz∈X ′ yft+1,X ′(x) ≥ Σz∈X yft+1,X (x) ∨

Σz∈X ′ yF
h
t,X ′(x) ≥ Σz∈X y(Ft,X (x) + ft+1,X (x))

.

Theorem 5 (C-CLB provides a lower empirical error w.r.t. the
classification loss of Subbagged Gentle Boost). Let ΦX be the
outcome of a real-valued collaborative Subbagged Gentle Boost
trained on X . If C-CLB is used as a method for collaboration
between its constituent boosting ensembles, then

R1
emp(Φ

(τ+1)
X ) ≤ R1

emp(Φ
(τ )
X ),

where τ = 1, . . . , T − 1.

Tighter upper bound
Proposition 1. Let f be the outcome of a real-valued classifica-
tion algorithm, trained on a dataset X and let ` be the exponential
or classification loss. Then for any two correctly classified training

Why CLB Approaches Work

instances zi, zk ∈ X , such that 0 ≤ yifX (xi) ≤ ykfX (xk),
|`(fX , zi)− `(fX \i∪z, zi)| ≥ |`(fX , zk)− `(fX \k∪z, zk)|, z ∈ Z.

Results

The experiments shown above indicate that both collaborative ap-
proaches, M-CLB and C-CLB, manifest significant improvements
of the overall generalization error, thus outperforming both Gentle
Boost and Subbagged Gentle Boost. Note that, a collaborative
Subbagged Gentle Boost consisted of S Gentle Boost ensembles is
compared with ST weak learners organized into a single Gentle
Boost ensemble. C-CLB displays lower variance because it gradu-
ally increases the number of ensembles used, hence the mean error
is stabilized, while M-CLB uses a fixed number of ensembles which
implies a higher variance, but has a negligible computational over-
head.

Conclusion

In this research, we propose a method for improving the gener-
alization error of bagged (or subbagged) algorithms, particularly
for Subbagged Gentle Boost. First, we provide an upper-bound-
based theoretical background for this specific class of algorithms;
we construct upper bounds on the generalization error and use
collaboration to improve them afterwards. Our two approaches
manifest a visible improvement of the error. We believe that the
same approach is going to have an improving effect on a broader
class of bagged/subbagged learning algorithms.
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