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A B S T R A C T   

Cancer is one of the most common causes of death in the world. It is characterized by the multi-stage trans
formation of normal cells into tumor cells. Early cancer detection can significantly reduce its consequences, 
which was the objective of many machine learning (ML) published studies. However, most of them focused on 
microarray, gene expression, or publicly available medical datasets. Almost none offered an approach for pre
dicting cancer through analysis of sequential data, such as Electronic Health Record (EHR) data. 

This paper presents a sequential ML approach to predict the occurrence of lung cancer, breast cancer, cervical 
cancer, and liver cell cancer using EHR data. The accuracy of sequence learning models based on long short-term 
memory (LSTM) and bidirectional gated recurrent units (GRU) were compared to traditional ML methods based 
on multilayer perceptron, random forest, decision tree, and K-nearest neighbor. The models were trained and 
tested on 50,606 patient hospitalization histories. Unsupervised and supervised data reduction methods (singular 
value decomposition (SVD) and a neural network embedding layer) were applied to overcome the challenges of 
high-dimensionality and sparsity of EHR data. 

The results provided evidence that for this application GRU outperforms alternatives based on accuracy, Area 
Under the Receiver Operating Characteristic curve (AUROC), sensitivity (recall), specificity, precision, and F1 
score. It was the best performing model with accuracy between 81% (breast cancer) and 88% (liver cancer) on 
balanced out of sample EHRs. Multilayer perceptron and LSTM manifested comparable performances (accuracies 
between 78% and 87%) among the alternatives, while decision tree was the worst-performing model. 

The findings of this study could potentially aid medical professionals in cancer diagnostics, treatment, and 
prevention. In particular, experiments confirmed that GRU could accurately predict cancer by learning from 
simplified patient representations using an embedding layer or SVD. Therefore, GRU’s predictions could be used 
in early cancer detection, potentially improving patients’ survival rates.   

1. Introduction 

Cancer is one of the deadliest diseases of the 21st century. It was 
proclaimed a leading cause of death worldwide in 2020 (nearly 10 
million deaths), the same year when the COVID-19 pandemic started 
(5.53 million deaths) [1]. One of the reasons this disease is so devas
tating is that it affects individuals of all ages, races, and genders. 
Additionally, differences in genetics, environmental and other factors 
can lead to differences in developing cancers among different people. 
More than 100 cancer types have been discovered, mostly named for the 
organs or tissues where cancer originates. Breast cancer is the most 
common cancer among women, with approximately 2 million new cases 
over the globe every year [2]. About 2 million new lung cancer cases and 

more than 800,000 liver cancer patients appear worldwide every year 
[2,3]. Around 550,000 new cases of cervical cancer are reported 
worldwide each year, and it occurs most often in women over age 30 [2]. 

Machine learning (ML) models have been used for the prediction and 
detection of different medical conditions [4,5], including various cancer 
types [6,7]. Many of them used genetic, molecular, and imaging data to 
predict the occurrence of cancer and optimal therapeutic approaches [8, 
9]. A support vector machine (SVM) was developed to predict the re
sponses of 175 cancer patients to a variety of chemotherapeutic drugs 
[10]. The authors evaluated the models on the gene-expression profiles 
of individual patient tumors, and the accuracies ranged from 81.5% to 
82.6%. Microarray gene expression was examined for lung cancer [11]. 
The author preprocessed the data and trained multilayer perceptron to 
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determine the subset of genes most likely to cause cancer. Medical image 
analysis is also essential in today’s medicine, but it requires a significant 
set of labeled data and appropriate ML techniques to make accurate 
predictions. A convolutional neural network (CNN) was constructed to 
classify hepatic tumor entities on multiphasic MRI [12]. The goal was to 
identify the correct radiological features present in test lesions. The 
dominating power of CNNs in medical fields was also confirmed by 
predicting lung cancer from CT imaging data [13]. The CNN architec
ture used in that study achieved a classification performance of around 
0.9 AUC. With the increase of available medical data, the application of 
ML models expanded. A liver cancer study on 2890 patients used Cox 
multivariate regression for analyzing independent risk factors and arti
ficial neural networks (ANNs) for prediction [14]. The ANNs achieved 
AUROC between 0.86 and 0.88 in 1-year survival analysis task. Another 
liver cancer study utilized the power of SVM to distinguish liver cancer 
patients from others [15]. Experiments aimed at predicting breast can
cer using several traditional ML models showed that SVM was the best 
performing model with an accuracy of 0.979 [16]. However, despite the 
expansion of ML cancer papers in previous years, hardly any study 
focused on exploiting heterogeneous EHRs, although such data is 
updated with many new patient information daily and exists in almost 
every hospital. 

This study proposes an ML approach to exploiting EHR data for 
cancer prediction. We predicted the occurrence of four common cancers: 
breast, cervical, liver, and lung cancer, using data from the Healthcare 
Cost and Utilization Project State inpatient database (HCUP SID) of 
California, collected between 2003 and 2011 [17]. The goal was to 
predict whether the patient would develop cancer within nine years of 
the first recorded hospitalization, learning from ICD-9 diagnosis codes. 
We hypothesized that two RNN models based on LSTM [18] and GRUs 
[19] achieve better prediction accuracy of cancer occurrence, as 
compared to four traditional ML models: multilayer perceptron (MLP) 
[20], random forest (RF) [21], decision tree (DT) [22] and K-nearest 
neighbor (KNN) [23]. Moreover, we hypothesized that expanding the 
sequence of hospitalizations at some point does not lead to accuracy 
improvement due to the curse of dimensionality and data sparsity. To 
test the hypothesis, we predicted cancers using different lengths of se
quences by considering: up to 5, up to 10, up to 25, and up to 50 hos
pitalizations. In addition, we compared the efficacy of two different 
embedding methods (SVD and neural network embedding layer) on the 
lung cancer dataset, our most extensive dataset. Contributions of this 
study are the following:  

• We successfully predicted four different cancers using EHR data 
alone, which is far more complicated to achieve than when imaging 
and/or gene data is available. Finding an appropriate approach for 
EHR representation (e.g. data extraction and preprocessing) is 
complex because such datasets are sequential, heterogeneous, and 
not stored for research purposes. 

• Data reduction methods proved to be very useful in predicting can
cers from highly dimensional and sparse data. They allowed us to 
summarize thousands of different diagnoses effectively from pa
tients’ histories without discarding the importance of any of them, 
instead of applying complex feature selections used in many previous 
studies.  

• We showed that learning from longer sequences of hospitalizations 
does not necessarily imply higher prediction accuracy. In particular, 
when many patients have short hospital histories, considering more 
hospitalizations causes more padding with zeros. Adding a large 
fraction of zeros makes the data irrelevant, meaning that data 
reduction methods cannot help enough in summarizing valuable 
insights. 

The rest of the paper is organized as follows: The Related work 
section provides a literature survey of recently published papers. The 
Materials and Methods section contains a detailed explanation of our 

EHR-based approach for predicting cancers (e.g. data preparation, 
dimensionality reduction methods). The obtained findings are presented 
in the Results section and analyzed in the Discussion section. Final in
sights were discussed in the Conclusion. 

2. Related work 

Risks of cancer development were extensively analyzed and large 
variability is reported between studies. Weegar and Sundstrom [24] 
predicted cervical cancer using free-text notes, diagnosis codes, drug 
codes, procedures, and lab results extracted from Swedish EHR data. It 
turned out that the clinical entities they retrieved from free text records 
provided the most precise predictions. However, such an approach leads 
to biased prediction models because phrases like “suspected cancer” 
usually appear in the notes before the diagnosis code is assigned. Atrey 
et al. [25] tried a dominance-based filtering approach to find the most 
important features for predicting breast cancer. They achieved a high 
accuracy between 98.9% and 99.6% by applying an ANN with only a few 
dominant features from the Wisconsin Breast Cancer dataset (WBCD). 
Although this filtering approach may be helpful, a drawback is that the 
approach was evaluated on only 699 patients and is missing a 
larger-scale prospective evaluation. Similarly, Li and Chen [26] used 
WBCD and another small dataset to apply several traditional ML models 
such as DT, RF, and SVM, without data preprocessing (e.g. feature se
lection, feature normalization). Moreover, both papers [25,26] based 
their predictions on only ten cytological attributes. Another breast 
cancer study introduced an ML-based decision support system, com
bined with random optimization for classifying primary breast cancer 
patients into two risk groups of progression [27]. The authors developed 
and applied the model to a sample of 454 patients. Besides achieving 
lower performances on a significantly smaller dataset, another draw
back of this paper is focusing on only one institution. On the other hand, 
we created the datasets using the HCUP SID database that included more 
than 95% of hospital discharges in the US and inpatient care records 
from multiple participating states [17]. 

Two papers used publicly available datasets of 165 and 535 clinical 
patients for hepatocellular carcinoma (HCC) survival analysis, the most 
common kind of liver cancer [28,29]. It was a binary classification 
problem in both cases: whether the patient will die (0) or survive (1), 
indicated by a one-year outcome evaluation [28] or after the surgery 
[29]. RF achieved the highest prediction accuracy in both studies 
(80.64% and 73.9%). 

Another liver disease study showed that the J48 decision tree algo
rithm could be beneficial in this topic with 0.507 mean absolute error 
[30]. The authors used the Indian Liver Patient Dataset, which contains 
583 patients. Like in most previously mentioned papers, the predictions 
were also based on a small number of attributes. Yuan et al. [31] did a 
thorough lung cancer analysis (classification and survival analysis) 
using a dataset of 76,643 patients. The authors used multiple NLP 
techniques to extract essential features from structured and unstruc
tured data. Even though the whole data preprocessing procedure was 
complex, and the dataset was significantly larger than ours, the final 
lung cancer classification model reached an AUROC of 92.7%. In 
contrast, our approach achieved around 92.2% without relying on NLP, 
which could lead to an optimistic estimate of the error due to possible 
information leaks from doctor and nurse notes. Miotto et al. used a 
complex autoencoder architecture to capture a compact and 
general-purpose set of features from the EHR data [32]. Instead of 
applying deep learning on the preprocessed EHR data, they used deep 
sequence learning to generate better representations of more than 700, 
000 patients to predict liver cancer along with 77 other diseases. 
Another deep learning ensemble method was used for feature extraction 
from EHRs of 1000 patients to predict lung cancer treatment failure 
[33]. The problem was formulated as binary classification, where the 
authors predicted lung cancer readmission using an ensemble of MLP 
models and model selection with adaptive multi-objective optimization. 
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Choi et al. [34] proposed an approach for learning the hierarchy be
tween diagnosis and procedure codes. They experimented with three 
different deep learning models to learn the multilevel embedding rep
resentation of a patient. Additionally, in Ref. [35], the authors applied 
similar learning techniques to monitor ICU mortality risk. By combining 
the Latent Semantic Analysis (LSA) and LSTM, they learned a repre
sentation of the embedding sequence using laboratory tests, vital signs, 
and medications. Both papers [34,35] used RNN in combination with 
logistic regression, where the former was utilized only for representation 
learning, while the latter was used for binary classification. However, 
those two mentioned approaches are different compared to our objec
tive. We used SVD and an embedding layer for representation learning, 
while RNNs were applied for cancer prediction. 

Most of the mentioned studies focused on genetic, imaging, or pub
licly available medical datasets, and almost none predicted cancer from 
sequential EHR data. Additionally, almost all prior studies were evalu
ated on much fewer examples than we used (except [31,32]). 

3. Materials and methods 

The proposed ML methods were trained on EHR data extracted from 
the HCUP SID California database. This database has the most extensive 
collection of longitudinal hospital care data in the US, with encounter- 
level data dating back to 1988 [17]. SID is one of the HCUP databases 
created in 1995, encompassing inpatient discharge abstracts from 
participating states. It contains clinical and nonclinical variables such as 
principal and secondary diagnoses, procedures, admission and discharge 
status, patient demographics characteristics, etc. We created a dataset of 
nine years (2003–2011) from this database, containing all hospitaliza
tions of patients in participating hospitals. 

We extracted and preprocessed the data for each cancer separately, 
focusing on diagnoses only. The format of all diagnoses codes follows the 
“International Classification of Diseases, Ninth Revision” (ICD-9). After 
this step, we created four datasets, one for each cancer. The main 
challenges in preprocessing were a heterogeneous number of hospitali
zations across patients and a high dimensionality of possible ICD-9 di
agnoses in each hospitalization. We observed all hospitalizations before 
a particular cancer was first diagnosed for positive patients (diagnosed 
with particular cancer). We considered only patients who had a mini
mum of four hospitalizations before the diagnosis of cancer because it 
has been shown previously that RNN models perform optimally with 
sequences of four or more hospitalizations [4]. We randomly chose an 
equal number of negative (cancer-free) patients from the original HCUP 
database. The group of negative patients also had at least four hospi
talizations. We balanced the average length of sequences to ensure the 
similarity between positive and negative classes. The number of patients 
and the number of ICD-9 diagnoses included in the final datasets are 
presented in Table 1. 

Furthermore, we balanced all four datasets to ensure that each has 
similar mean age in positive and negative cohorts (Table 2). 

The preprocessed dataset for each cancer can be represented as a 
sparse matrix, where the rows represent patients. Each row contains a 
patient’s hospitalizations in the sequential order in which the patient’s 
visits occurred. Different patients had a different number of hospitali
zations before the cancer was diagnosed. Therefore, we observed up to 
50 visits for each patient. If the patient had less than 50 hospitalizations, 
we filled the rest with zeros. We used a one-hot encoded (also known as a 

“bag-of-words”) representation. Each value was set to 1 or 0, indicating 
whether a disease was diagnosed at a specific visit or not, respectively. 
Most of the values were zeros since only a few diagnoses were found 
during each hospitalization. 

Given that there were many diagnoses in the one-hot encoded rep
resentation (as evident in Table 1), we combined SVD with each pre
diction model to reduce data dimensionality. As an alternative, we also 
applied embedding layers in RNN models for data dimensionality 
reduction. Both approaches are described in the following subsection. 

3.1. Dimensionality reduction 

To choose relevant features and reduce the dimensionality (i.e. the 
number of features), we experimented with two embedding methods:  

● Singular value decomposition (SVD)  
● Incorporating an embedding layer in the architecture of RNN models 

Singular value decomposition is a well-developed method for 
extracting dominant features of large datasets and reducing data 
dimensionality [36]. It generates unsupervised embeddings since it is 
unaware of the prediction target during the generation process. Given 
that traditional ML models cannot capture the sequential correlation 
between hospitalizations like RNN models, we had to create different 
inputs for RNN and traditional ML models. We applied SVD separately 
on each of the inputs (Fig. 1). 

For RNN models, each cancer dataset was represented as a 3D matrix 
(tensor) C of size p × h × d, where p is the number of patients, h is the 
number of hospitalizations, and d is the number of unique diagnoses. For 
example, preprocessed lung cancer dataset had the following di
mensions: 28,038 × 50 × 7024. For each of the 28,038 patients, we 
recorded the first 50 hospitalizations, where for each hospitalization, 
there were 7024 different diagnoses. After applying SVD, the result was 
a lower rank tensor C of size p × h × r, where r was much smaller than d. 
The optimal number of reduced components r was determined based on 
Experiment 1 shown in the Results section. We experimented with 
different values between 100 and 500. When we chose 500, the di
mensions of the lung cancer dataset were reduced to the following: 
28,038 × 50 × 500. On the other hand, for traditional models, we 
preprocessed 2D matrices T of size p × d. In this format, the lung cancer 
dataset had the following dimensions: 28,038 × 7024. Each value in 
such matrix represented how many times a particular diagnosis was 
found across the first 50 patient hospitalizations. Additionally, we scaled 
all the values to the range between 0 and 1 before using SVD. The SVD 
output was a matrix T of size p × r. When we set r = 500, the lung cancer 
dataset for traditional models was reduced to 28,038 × 500. In both 
cases, RNN and standard inputs, reduced dimensionality matrices still 
carry the essential information from their respective original 
representation. 

Another compelling feature selection method based on an embed
ding layer was incorporated in the RNN model. Embedding layers are 
designed for learning vector representations of categorical data [37]. In 
contrast to SVD, an RNN embedding layer produces supervised embed
dings as a part of the training process. Additionally, this layer is trained 

Table 1 
The total number of patients and diagnoses ICD9 codes in four cancer datasets.  

Cancer type Total # of patients Number of distinct disease ICD9 codes 

Lung cancer 28,038 7024 
Breast cancer 12,498 6244 
Cervix uteri 1748 4166 
Liver cell cancer 8322 5713  

Table 2 
Patients’ statistics for four cancer datasets.  

Cancer type Patient class Average age 

Lung cancer Positive 73 
Negative 75 

Breast cancer Positive 71 
Negative 71 

Cervix uteri Positive 59 
Negative 60 

Liver cell cancer Positive 65 
Negative 67  
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like all other layers in the network architecture, i.e. to minimize the loss 
function using the selected optimization method. 

We used an embedding layer for the same purpose as SVD, which was 
to map the categorical input variables to real-valued vectors of smaller 
dimensionality than the input vectors. For example, we utilized an 
embedding layer to map a one-hot representation of the mentioned lung 
cancer dataset (28,038 × 50 × 7024) to a real-valued 28,038 × 50 × 500 
matrix. In other words, an embedding layer learned (during the training 
process) a 50 × 500 embedding representation for each of the 28,038 
patients. The learned embeddings were then used as feature vectors for 
predictions. 

3.2. Prediction models 

The prediction problem is formulated as binary classification. The 
hospitalization when cancer occurred was used as a class label. If 
diagnosed with cancer, we assigned a patient to the positive class (‘1′). 
Otherwise, we put the patient into the negative class (‘0′). We experi
mented with two different RNN models. These models are advantageous 
for the sequence data, especially when one data point is dependent on 
the preceding data point, like in our case. The reason is that they have a 
memory to store the states or information of previous inputs in order to 
construct the sequence’s subsequent output. This mechanism is also 
known as a hidden state. The following equations explain the learning 
process: 

ht+1 = relu(WxXt +WhXt + bh) (1)  

yt+1 = sigmoid
(
Wy * ht+1 + by

)
(2) 

To calculate the hidden state ht+1 for the next step t+ 1, we use input 
weights Wx and hidden units weights Wh together with the input Xt from 
the current time step t, and bias bh from the recurrent layer. At the end of 
the calculation, a nonlinear transformation ReLU is applied. 

Furthermore, to predict yt+1, we multiply the newly learned hidden state 
with the weights Wy from the output layer. We also add up bias by of all 
neurons in the network. Finally, everything is pulled through a sigmoid 
function. 

The first model contains layers with LSTM units capable of learning 
long-term dependencies in sequential data. Remembering information 
for long periods is practically their default behavior. The second model 
has layers with GRUs. Unlike the LSTM unit, the GRU has gating units 
that modulate information flow without separating memory cells [38]. 
This structure allows to adaptively capture dependencies from large data 
sequences without discarding information from earlier parts of the 
sequence. 

The architectures of both models are identical, with one hidden layer 
of 64 neurons (Fig. 2). Empirical evaluation of RNN models showed that 
both the LSTM and GRU demonstrated superiority over traditional ML 
models [39]. Since LSTM and GRU architectures have shown surpassing 
results in various applications, we compared both in our experiments. 

SVD and embedding layer were tested separately with both RNN 
methods. The output layer contains only one neuron with the sigmoid 
activation function. The adaptive learning rate optimization algorithm 
ADAM was used to train the RNN models [40]. 

A potential problem with training neural networks could be the 
number of epochs. A large number of epochs could lead to overfitting, 
whereas an insufficient number of epochs may result in an underfit 
model. That is why in our application, sequential learning models used 
the early stopping method, which monitored the model’s performance 
during training. The objective of the method is to stop the training when 
the validation loss (binary cross-entropy loss) starts to increase 
constantly. As a result, both RNN models were trained through 20 
epochs unless stopped earlier by the method mentioned above. 

We used a batch size of 64 since, in such a way, the overall training 
procedure required less memory. Furthermore, a smaller size was cho
sen because it is reported across many applications that using such small 

Fig. 1. An application of the SVD reduction method on RNN input (left) and standard ML input (right).  
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batch sizes achieves training stability and improved generalization 
performance [41]. 

To compare the performance of the proposed sequence learning 
models, we also trained four standard machine learning models: DT, 
MLP, RF, and KNN. Only default settings provided in the scikit-learn 
Python library were used for DT and MLP without parameter tuning 
[42]. For RF and KNN, we used the standard implementation with basic 
settings (for RF the maximum depth was set to 10 and the number of 
trees to 100, while for KNN the number of nearest neighbors was 3). All 
prediction models were run separately for each of the four studied 
cancers. We trained the models on 80% of patients selected entirely at 
random, and the remaining 20% we used for testing, while 25% of the 
training set was used for training validation. All models were run on 
balanced datasets, and we measured test accuracy, Area Under the 
Receiver Operating Characteristic curve (AUROC), sensitivity (recall), 
specificity, precision, and F1 score. Prediction accuracy was chosen as a 
primary metric since there are equal patients in both classes for each 
cancer. However, we also reported the AUROC score for a more 
comprehensive evaluation of the models. The difference between these 
two metrics is based on the decision threshold, i.e. class probability 

threshold. In binary classification, the threshold is the value over which 
a sample is assigned to class one. AUROC is a metric that evaluates a 
binary classifier’s output over decision thresholds varying between 
0 and 1, whereas the accuracy indicates how well a classifier performs 
for the default threshold of 0.5. High accuracy and high AUROC indicate 
that the classifier performs admirably for the default threshold and 
similarly for many other threshold values. Additionally, an admirably 
accurate classifier should have high sensitivity and specificity. Since the 
AUROC score summarizes the model’s efficacy in terms of sensitivity 
and specificity for various decision thresholds, we calculated those two 
metrics only for the 0.5 threshold. The source code is available at the 
following Github repository: https://github.com/jovanandj/ML 
_cancers_prediction. 

4. Results 

4.1. Comparison of embedding methods 

We used our most extensive dataset, the lung cancer dataset, to 
compare the embedding methods. A comparison of the predictive 

Fig. 2. Architectures of RNN models: LSTM (left) and Bidirectional GRU (right).  

Fig. 3. GRU’s accuracy (left) and AUROC (right) with: SVD (blue) or RNN Embedding layer (red). (For interpretation of the references to colour in this figure legend, 
the reader is referred to the Web version of this article.) 
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performances obtained when using SVD or an embedding layer is shown 
in Fig. 3. 

In general, the two methods acted very similarly across different 
dimensions. The most significant difference in performance can be seen 
when the data was reduced to 100 dimensions, where an Embedding 
layer showed a few percent higher performances than SVD. However, as 
the number of dimensions kept increasing, SVD produced inputs that led 
to comparable performances as Embedding layer’ inputs. In fact, at 400 
dimensions, SVD was a little bit better in helping GRU predict lung 
cancer based on accuracy. 

4.2. Experiments with cancer datasets 

The results of five experimental runs in terms of accuracy, AUROC 
score, sensitivity (recall), specificity, precision, and F1 score are re
ported in Table 3. We labeled the best results in bold for each type of 
cancer. 

Comparisons of all six prediction models for each cancer dataset are 
shown in Figs. 4 and 5. Given that SVD led to better prediction perfor
mance when it reduced the data dimensionality to 300 and 500 features, 
we chose the lowest dimension that performed the best. We trained all 
models on datasets with 300 SVD-preprocessed features. Additionally, 
all datasets were balanced, containing 50% of cancer-positive patients. 

GRU generally obtained the best performance across the six evalu
ation metrics on all datasets, with 2–18% higher accuracy and a 
considerably higher AUROC score (between 0.87 and 0.94) than all al
ternatives. This model showed the highest accuracy of 88% in predicting 
liver cancer. Additionally, it can be observed that GRU made excellent 
predictions for the 0.5 decision threshold, while for other thresholds, it 
may perform even better. Interestingly, LSTM and MLP achieved com
parable accuracy in predicting cancers (between 78% and 87%), even 
though LSTM was given more informative input. Moreover, MLP 
considerably outperformed LSTM in terms of AUROC. As for the other 
traditional ML models, DT was the worst-performing classifier on all 
four datasets with an accuracy between 63% and 71%. 

In summary, all six models achieved the best results overall when 
predicting liver cancer, while the most challenging classification task 
was breast cancer prediction. Also, all models have shown admirable 
performances in predicting lung cancer. 

4.3. Experimenting with different lengths of sequences 

Besides the experiments based on all available visits in our datasets, 
we also wanted to test models’ performance by observing fewer visits. In 
particular, our goal was to infer a sufficient number of observed visits for 
reaching optimal predictions, and we wanted to estimate the usefulness 
of padding. The number of patients was constant through this experi
ment, focusing on different numbers of earliest visits: up to 5, up to 10, 
up to 25, and up to 50. The choice of these four sequences’ lengths was 
based on the statistics shown in Table 4. Since the average number of 
visits was between seven and nine, we tested our models on 5-visits and 
10-visits sequences because we expected the biggest padding increase 
between these two lengths. Moreover, we had to pick another sequence 
length closer to 50 visits, representing most of the patients from the 
datasets. That is why we also tried with 25-long sequences. 

Different lengths of visit sequences require more or less padding 
(filling in missing data with zeros, as described in the Methodology 
section), depending on how many visits each patient in the dataset had. 
For example, there was far less padding in “up to 5′′ than in the “up to 

Table 3 
Results of sequential learning (LSTM and GRU) and traditional models (MLP, RF, DT, KNN) trained on the four cancer datasets after creating 300 SVD features for each 
dataset. The results are reported in terms of the models’ mean performances over five runs and the corresponding standard deviations.  

Type of cancer Models Accuracy AUROC Sensitivity (Recall) Specificity Precision F1 score 

Lung cancer (D162) GRU 0.85 ± 0.005 0.92 ± 0.001 0.86 ± 0.02 0.84 ± 0.02 0.84 ± 0.01 0.85 ± 0.004 
LSTM 0.84 ± 0.004 0.75 ± 0.01 0.74 ± 0.01 0.62 ± 0.02 0.66 ± 0.01 0.7 ± 0.004 
MLP 0.83 ± 0.004 0.83 ± 0.004 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.005 0.83 ± 0.01 
RF 0.78 ± 0.01 0.78 ± 0.01 0.77 ± 0.005 0.79 ± 0.01 0.79 ± 0.01 0.78 ± 0.004 
DT 0.67 ± 0.01 0.67 ± 0.01 0.67 ± 0.01 0.67 ± 0.01 0.67 ± 0.01 0.67 ± 0.01 
KNN 0.7 0.7 0.83 ± 0.004 0.58 ± 0.004 0.66 ± 0.005 0.74 ± 0.005 

Breast cancer (D174) GRU 0.81 ± 0.01 0.87 ± 0.004 0.81 ± 0.023 0.77 ± 0.02 0.79 ± 0.01 0.8 ± 0.01 
LSTM 0.78 ± 0.01 0.7 ± 0.01 0.73 ± 0.04 0.53 ± 0.05 0.61 ± 0.02 0.67 ± 0.01 
MLP 0.78 ± 0.01 0.78 ± 0.01 0.79 ± 0.02 0.78 ± 0.01 0.78 ± 0.01 0.79 ± 0.01 
RF 0.74 ± 0.01 0.74 ± 0.01 0.7 ± 0.01 0.78 ± 0.01 0.76 ± 0.01 0.73 ± 0.01 
DT 0.63 ± 0.01 0.63 ± 0.01 0.64 ± 0.01 0.62 ± 0.02 0.63 ± 0.02 0.64 ± 0.01 
KNN 0.67 ± 0.004 0.67 ± 0.004 0.8 ± 0.01 0.53 ± 0.004 0.63 ± 0.01 0.71 ± 0.01 

Cervix uteri cancer (D180) GRU 0.82 ± 0.01 0.89 ± 0.03 0.79 ± 0.07 0.82 ± 0.03 0.81 ± 0.02 0.8 ± 0.04 
LSTM 0.8 ± 0.01 0.7 ± 0.02 0.73 ± 0.07 0.53 ± 0.03 0.6 ± 0.02 0.66 ± 0.03 
MLP 0.83 ± 0.01 0.83 ± 0.01 0.84 ± 0.02 0.81 ± 0.02 0.81 ± 0.02 0.82 ± 0.01 
RF 0.73 ± 0.02 0.73 ± 0.02 0.68 ± 0.03 0.79 ± 0.01 0.75 ± 0.02 0.71 ± 0.02 
DT 0.66 ± 0.02 0.66 ± 0.02 0.68 ± 0.03 0.63 ± 0.05 0.64 ± 0.02 0.66 ± 0.01 
KNN 0.7 ± 0.01 0.71 ± 0.01 0.82 ± 0.02 0.59 ± 0.03 0.66 ± 0.01 0.73 ± 0.01 

Liver cancer (D155.0 and D155.1) GRU 0.88 ± 0.005 0.94 ± 0.004 0.87 ± 0.01 0.87 ± 0.02 0.87 ± 0.01 0.87 ± 0.01 
LSTM 0.87 ± 0.004 0.82 ± 0.006 0.75 ± 0.01 0.72 ± 0.01 0.73 ± 0.01 0.74 ± 0.004 
MLP 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.005 0.87 ± 0.01 0.87 ± 0.004 
RF 0.8 ± 0.005 0.8 ± 0.004 0.74 ± 0.01 0.86 ± 0.01 0.84 ± 0.01 0.79 
DT 0.71 ± 0.01 0.71 ± 0.01 0.71 ± 0.01 0.69 ± 0.03 0.7 ± 0.01 0.71 ± 0.01 
KNN 0.74 ± 0.01 0.74 ± 0.01 0.81 ± 0.01 0.68 ± 0.01 0.72 ± 0.01 0.76 ± 0.01  

Fig. 4. Accuracy of six ML models on four types of cancer.  
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50′′ experiment for the same 28,038 patients of the lung cancer dataset. 
The reason was that patients with long hospital histories were rare. 
Therefore, in the “up to 5′′ lung cancer experiment, the models analyzed 
all 28,038 patients, which included 12,824 patients with up to five visits 
and 15,214 with longer hospital histories but using only the first five 
visits for the patients with more than five visits. This means we applied 
padding only for those who had less than five visits. We hypothesized 
that increasing the visits would not constantly improve the model’s 
accuracy. 

The results showed that most models had similar performances on 25 
and 50 visits, implying that the models saturated when they observed 
more than 25 visits. For example, GRU learned well and performed 
identically with both sequence sizes in all four prediction tasks. Its ac
curacy was between 81% (breast cancer) and 88% (liver cancer). In 
general, the models’ accuracy difference between these two sequence 
lengths was 1% on average. Moreover, the difference between 10 and 25 
hospitalizations was more significant, around 1–4%, suggesting that 
models could achieve decent performances using ten visits, but not as 
optimal as learning from 25 visits. 

On the other hand, all models produced the worst predictions when 
they observed only five visits. On average, the accuracy was 4% less than 
the accuracy achieved with ten visits. Additionally, this accuracy dif
ference between 5-visit and 10-visit sequences turned out to be the most 

considerable accuracy increase. The worst performing models in this 
experiment were DT and KNN. DT accuracy was between 59% and 73%, 
while for KNN, it was in the range of 61%–74%. 

5. Discussion 

This study compared sequential learning RNN and traditional ML 
models using diagnosis codes extracted from EHR data for four common 
cancers. The obtained results (Fig. 3) showed that the embedding layer 
and SVD were comparable in finding relevant features in 7024 different 
diagnoses from the lung cancer dataset. In some cases, the GRU model 
achieved slightly better accuracy and AUROC score using an embedding 
layer. A possible explanation for the outcome is that the RNN embedding 
layer takes an integral part of the recurrent network architectures. Thus, 
backpropagation allows for learning embeddings tailored to the cancer 
prediction task. On the other hand, SVD is a separate (out-of-architec
ture) embedding method that produces low-dimensional embeddings 
before the model training. In that regard, the SVD-based embeddings are 
learned in an unsupervised manner, making them task-agnostic, and 
thus, they are not specialized for cancer prediction. 

The second experiment (Table 3) compared all six ML models on 
every cancer dataset. GRU outperformed the other methods on all 
datasets, except the cervical cancer dataset. For Cervix uteri, MLP 
showed better performance than both RNN models. The reason might be 
the smallest dataset size of only 1748 patients. Thus, insufficient 
training samples made it difficult for sequential learning models to find 
the temporal correlation between patient diagnoses. Another critical 
point might be that the number of unique diagnoses in the original 
cervical cancer dataset was almost five times larger than the number of 
patients, meaning significantly more features than examples. Although 
we applied SVD, which is considered suitable for dimensionality 
reduction under such conditions, the insufficient number of examples 
may still be an obstacle in sequential learning. 

All six models achieved the best results on the liver cancer dataset. 
Additionally, lung cancer prediction results were also admirable. 
Although we did not use age in preprocessing to balance the cohorts’ 
distribution, the patients’ age statistics might adequately explain this 
outcome. In particular, the most significant age difference between 
negative and positive patients was in lung and liver cell datasets, 
meaning that the distribution of the cohorts was a bit different in these 
datasets. Thus, it might be simpler for classifiers to learn to distinguish 
patients. 

The arguments for this assumption could be found by analyzing 
specificity. The highest specificity (which measures the proportion of 
correctly identified negative patients) for all models was achieved pri
marily in lung cancer and liver cancer predictions. Considering that 
negative patients in these two datasets were two years older on average, 
this might be why the models had better performances in those two 
prediction tasks. Moreover, this observation may also be supported by 
the fact that the worst performance was obtained when predicting breast 
cancer, for which the mean age in both cohorts was identical. However, 
we need to emphasize that the patient’s age was not explicitly utilized as 
a prediction feature. 

In general, GRU was better than the other models with respect to six 
evaluation metrics. Judging by the prediction accuracy, GRU performed 
at least 2% better in every case, while in terms of AUROC, it was 
significantly better than alternatives. On the other hand, the worst 
model was DT, which was expected considering its modeling capacity. It 
allows for neither learning abstract patient representations nor 
capturing any temporal correlations between patients’ diagnoses. The 
LSTM model performed similarly to MLP, even though LSTM was given 
additional temporal information. 

In the third experiment (Table 5), we estimated models’ accuracy by 
observing up to 5, up to 10, up to 25, and 50 hospitalizations. On 25 and 
50 visits, most of the models behaved similarly, while on up to 5 visits, 
all models achieved the lowest accuracies. The largest significant gain in 

Fig. 5. AUROC score of six ML models.  

Table 4 
Statistics of visits/hospitalizations separated into four groups: up to 5, up to 10, 
up to 25, and up to 50, across four cancer datasets. The average number of visits 
was reported regarding the mean number of visits and the corresponding stan
dard deviation.  

Cancer type Average number 
of visits 

Number of 
visits 

Number of 
patients 

Padding 
percent 

Lung cancer 7.4 ± 4.9 Up to 5 12,824 5.4 
Up to 10 23,638 35.5 
Up to 25 27,739 71.0 
Up to 50 28,038 85.3 

Breast 
cancer 

7.5 ± 5.0 Up to 5 5713 5.6 
Up to 10 10,450 35.4 
Up to 25 12,340 70.5 
Up to 50 12,498 85.0 

Cervix uteri 
cancer 

9.1 ± 7.8 Up to 5 684 4.5 
Up to 10 1326 31.1 
Up to 25 1683 65.7 
Up to 50 1748 82.1 

Liver cancer 7.81 ± 5.3 Up to 5 3560 5.3 
Up to 10 6765 33.8 
Up to 25 8192 69.4 
Up to 50 8322 84.4  
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accuracy was reported between 5-visit and 10-visit sequences. 
Furthermore, some models showed even better results with shorter input 
sequences, such as DT and liver cancer dataset or MLP and breast cancer 
dataset. These outcomes are probably related to the size of the dataset, 
the model’s learning power, and the complexity of the prediction task. 
For instance, all six models predicted liver cancer the same as with 50 
visits or better when the input sequences contained up to 25 visits, 
potentially implying that this task was undemanding with an acceptable 
amount of information in the first 25 visits. 

This paper showed a successful approach for utilizing EHR data in 
predicting the four most common cancers. As shown in Table 6, other 
ML cancer papers mostly experimented with microarrays/expression 
data, imaging data, or publicly available datasets. 

EHRs are used in hospitals to follow patients’ conditions and his
tories. Physicians use them to keep track of patients’ demographic in
formation, diseases found during patients’ hospitalization, diagnosis, 
therapies, lab results, etc. Frequent updates with new patient informa
tion make EHR databases sequential and information-rich. However, 
EHRs are intended for supervising hospital patients, but not for the 
research purposes like gene expressions, microarrays, and readily 
available datasets. Hence, it is significantly more difficult to handle data 
extraction and preprocessing for such data. Equally important, as 
Table 6 showed, the average medical dataset contains hundreds of ex
amples, while we have tens of thousands, thus, making it even more 
challenging to find a suitable approach. We demonstrated that sequen
tial ML models and data reduction methods could be a great combina
tion in learning from sparse and high-dimensional data. Additionally, 
we presented that we cannot improve predictions even with data 
reduction methods if the sequence of patient visits is too long. Finally, 
the results of four classification tasks on a substantially large dataset 
support our claims and hypotheses. 

Our study has several limitations. First, as we already mentioned, 
EHR databases are not utilized to collect information for research. 
Therefore, datasets of this type are often sparse and noisy, making them 
difficult to examine closely. Furthermore, we did not have access to all 
medical features from the records during the examination of the HCUP 
SID database. In other words, we could not take advantage of helpful 
information such as medical notes, lab results, and the first notice of 
“cancer in situ” (formation of abnormal cells). Finally, RNNs were only 
able to learn the order of patient visits, but not the time between the 
visits. Thus, this will be our future work. Suppose we manage to modify 
the cells of RNN models to consider the time between two consecutive 
visits of the patient. In that case, we could significantly increase 

Table 5 
Accuracy of the models trained with 5, 10, 25, and 50 visits/hospitalizations 
sequences. The results are reported regarding the models’ mean performances 
over five runs and the corresponding standard deviations.  

Cancers visits GRU LSTM MLP RF DT KNN 

Lung 
cancer 

5 0.8 ±
0.003 

0.75 
±

0.002 

0.77 
±

0.003 

0.75 
±

0.005 

0.63 
± 0.01 

0.61 
± 0.01 

10 0.84 
±

0.003 

0.79 
±

0.003 

0.82 
±

0.005 

0.77 
±

0.004 

0.66 
±

0.005 

0.67 
± 0.01 

25 0.85 
±

0.002 

0.83 
±

0.005 

0.83 
±

0.002 

0.78 
± 0.01 

0.68 
±

0.005 

0.63 
±

0.005 
50 0.85 

± 0.01 
0.84 
±

0.004 

0.83 
±

0.003 

0.78 
±

0.005 

0.67 
± 0.01 

0.7 

Breast 
cancer 

5 0.75 
±

0.003 

0.71 
±

0.004 

0.74 
± 0.01 

0.72 
±

0.003 

0.61 
± 0.01 

0.61 
± 0.01 

10 0.79 
± 0.01 

0.74 
± 0.01 

0.77 
±

0.004 

0.74 
±

0.004 

0.64 
± 0.01 

0.63 
± 0.01 

25 0.81 
±

0.004 

0.78 
±

0.004 

0.79 
±

0.002 

0.74 
± 0.01 

0.64 
± 0.01 

0.63 
±

0.005 
50 0.81 

±

0.007 

0.78 
±

0.005 

0.78 
± 0.01 

0.74 
± 0.01 

0.64 
± 0.01 

0.67 
± 0.01 

Cervix 
uteri 
cancer 

5 0.76 
± 0.02 

0.71 
± 0.02 

0.76 
± 0.02 

0.69 
± 0.02 

0.59 
± 0.02 

0.62 
± 0.02 

10 0.81 
± 0.01 

0.76 
± 0.01 

0.79 
± 0.02 

0.73 
± 0.02 

0.62 
± 0.03 

0.64 
± 0.01 

25 0.82 
± 0.02 

0.79 
± 0.02 

0.78 
± 0.03 

0.71 
± 0.02 

0.64 
± 0.01 

0.62 
± 0.02 

50 0.82 
± 0.01 

0.8 ±
0.01 

0.83 
± 0.01 

0.73 
± 0.02 

0.66 
± 0.02 

0.7 ±
0.01 

Liver 
cancer 

5 0.84 
± 0.01 

0.8 ±
0.01 

0.84 
± 0.01 

0.78 
± 0.01 

0.68 
± 0.01 

0.7 ±
0.01 

10 0.87 
±

0.004 

0.83 
±

0.005 

0.86 
± 0.01 

0.81 
±

0.005 

0.7 ±
0.01 

0.73 
± 0.01 

25 0.88 
±

0.004 

0.86 
±

0.004 

0.87 
± 0.01 

0.82 
± 0.01 

0.73 
± 0.01 

0.73 
± 0.01 

50 0.88 
±

0.005 

0.87 
±

0.004 

0.87 
± 0.01 

0.8 ±
0.005 

0.71 
± 0.01 

0.74 
± 0.01  

Table 6 
Study comparisons based on the dataset type, size, predicted disease, models, prediction accuracy, and AUROC score. We compared our approach with the studies 
mentioned in Introduction and Related work sections.  

Papers Dataset & disease Size Model Accuracy AUROC 

Our approach EHR, four cancers 50,606 RNN GRU 81%–88% 0.88–0.9 
Asri et al. [6]; 2016 WBCD, breast cancer 699 SVM 97.13% – 
Xie et al. [9]; 2021 Biomarkers, lung cancer 153 Naïve Bayes 100% 1 
Huang et al. [10]; 2018 Gene expression, multiple cancers 175 SVM 82.6% – 
Pati [11]; 2019 Gene expression, lung cancer 96 MLP 86.7% – 
Wang et al. [12]; 2019 MRI, liver cancer 494 CNN 92% – 
Kadir and Gleeson [13]; 2018 CT images, lung cancer 1397 CNN – 0.87 
Liu et al. [14]; 2020 Laboratory data, liver cancer 2890 ANN – 0.86–0.88 
Zhang et al. [15]; 2020 Microarray data, liver cancer 1333 SVM 96.6% – 
Khourdifi and Bahaj [16]; 2018 WBCD, breast cancer 699 SVM 97.9% – 
Weegar and Sundström [24]; 2020 EHR, cervical caner 1.321 RF – 0.9 
Atrey et al. [25]; 2019 WBCD, breast cancer 699 ANN 99.6% – 
Li and Chen [26]; 2018 WBCD and BCCD, breast cancer 815 RF 74.3%–96.1% 0.785–0.989 
Ferroni et al. [27]; 2019 Clinical and biochemical data, breast cancer 454 DSS 86% – 
Rajesh et al. [28]; 2020 UCI HCC survival, HCC 165 RF 80.64% – 
Wang et al. [29]; 2021 BioStudies database, HCC 535 RF 73.9% 0.803 
Priya et al. [30]; 2018 UCI ILPD, liver cancer 583 J48 DT 69%–95% – 
Yuan et al. [31]; 2021 EHR, lung cancer 76,643 NLP & LR – 92.7% 
Miotto et al. [32]; 2016 EHR, liver cancer 700,000 DeepPatient – 0.886 
Wang et al. [33]; 2019 EHR, lung cancer 1000 MoEDL – 0.75  
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prediction accuracy and use fewer hospitalizations to make the final 
prediction. 

6. Conclusion 

The results achieved in this study show that our approach, especially 
for RNN architectures, could predict the de-novo occurrence of cancer 
with high accuracy. GRU with an embedding layer could be potentially 
used as a decision support algorithm for early cancer detection by pre
dicting hospitals’ EHR data. When the cancer is detected early, patients 
have more treatment options and a far greater chance of survival. 
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