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Abstract—The methods for power system event detection using 
field-recorded data from Phasor Measurement Units (PMUs) 
often require many labeled events, which can be costly or 
infeasible to obtain. We show that events in one power system can 
be accurately detected by reusing a small number of carefully 
selected labeled PMU data from another without the need for 
additional labeling. Our transfer learning-based approach 
outperforms alternative state-of-the-art conventional machine 
learning (ML) methods on a large PMU historical dataset. We 
demonstrate this approach with a use case of detecting events 
from historical PMU data recorded in the Eastern 
Interconnection in the USA by using similar labeled PMU data 
from the Western Interconnection. This technique may be 
propagated to other situations where some of the events’ data 
from one power system may be applied to enhance learning in 
another.   

Keywords – Big data, Power system disturbance, Event detection, 
Machine learning, Phasor Measurement Unit, Transfer learning. 

I. INTRODUCTION 
The reliability of electric power systems may be severely 

impacted by many events of different types, caused by a 
variety of factors that occur irregularly over time. Some events 
such as transmission line faults due to severe weather, 
vegetation impact, etc. may be local, and some such as 
fundamental frequency events are system-wide. The volume of 
data collected by numerous PMUs in a given utility or 
interconnection system may reach hundreds of terabytes over 
a single year since data are reported at the rate of 30 to 60 
frames per second [1]. The manual means for analysis of such 
elaborated historical recordings are impractical and efficient 
automated analysis is needed but finding a solution may be 
challenging [2].  

With the increase in the availability of PMU measurements 
in electric utilities, there is a potential for the development of 
new machine learning (ML) applications that could 
significantly increase the importance of storing and managing 
the PMU data and provide new predictive decision-making 
tools [3]. Event detection is one of the most beneficial 
applications [4] focusing on the identification of instances in 

PMU measurements that have a significant deviation from the 
normal operating conditions of the system.  

Various event detection approaches based on PMU 
measurements have been investigated. The event detection 
method based on the Principal Component Analysis was 
introduced [5] and was applied for the analysis of cascading 
events [6]. ML methods such as K-Nearest Neighbor (KNN), 
Support Vector Machine (SVM), and Decision Tree (DT) were 
also applied [7]. Convolutional Neural Network was used to 
classify events based on wavelet analysis [8]. Other feature 
engineering methods include: Detrended Fluctuation Analysis 
[9] and Signal Energy Transform [10]. Applicability of transfer 
learning (TL) to transient stability problem was investigated in 
[11] and applied to the analysis of oscillation events in 
transmission system [12], and fault detection in distribution 
systems [13]. Supervised transfer learning was proposed for 
event type differentiation and was applied on synthetic PMU 
data [14]. However, accurate event labeling on real-world, 
field-recorded PMU data remains a challenge. 

 In our study, we mitigate the essential need for extensive 
event labeling by utilizing a TL approach that only requires a 
small number of well-labeled events from one power system 
to detect events in another without any additional labeling 
efforts. We utilize a TL method combined with a semi-
supervised detector that leverages related labeled instances 
from a source dataset to the target domain. Selected relates 
instances aid semi-supervised detectors detect events since it 
selects instances from the source that are similar to the target 
domain. Our contribution is in the enhancement of the TL 
method using a non-redundant approach that does not select 
duplicates/similar instances in order to improve computation 
efficiency. We improve the semi-supervised detector by using 
an alternative similarity measure that is more applicable to the 
dimensionality of the PMU data. Our approach demonstrates 
superior performance over various state-of-the-art ML 
algorithms (unsupervised, semi-supervised, and supervised) 
when leveraging labeled data from one power system to detect 
events in another.  

II. TRANSFER LEARNING FOR EVENT DETECTION 
A. Rationale for Transfer Learning  
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Most disturbances detected by the PMUs are typically not 
labeled. Some labels can be created by utility using SCADA 
event logs, but such event logs may not be reliable. Event 
detection tasks are often performed using an unsupervised 
approach since manually labeling data can be time-consuming 
and costly. However, unsupervised approaches are not aided 
by labeled data that allow the possibility of correcting errors. 
On the other hand, supervised classification approaches 
require enough accurate labels, which can be infeasible to 
obtain. Thus, unsupervised as well as supervised ML 
approaches for event detection in power systems have serious 
limitations when labels are unavailable or imprecise. We 
hypothesize that it might be feasible to transfer relevant labeled 
instances from a source power system to address the problem 
at the target power system by using minimal labeled data 
instances.   

TL objective is to use similar labeled instances from a 
related source task to facilitate learning in the target domain 
based on a minimal amount of labeled data. Because semi-
supervised detectors assume the availability of a finite number 
of labeled data instances, TL is frequently used with semi-
supervised learning methods. In such instances, TL utilizes 
labeled data from a similar dataset to train a model for the 
unlabeled target dataset [15].  

TL is frequently used on datasets that defy conventional ML 
modeling assumptions. When solving event detection, the 
following assumptions should be considered: (1) the 
dimensionality of the feature space of the source and target 
datasets might differ; (2) covariate shift assumption, i.e., 
marginal distributions of the source and target datasets might 
be dissimilar; and (3) concept shift assumption, i.e., 
conditional distributions might differ since the meaning of an 
identical behavior might differ in the source and target 
domains. The second and third assumptions challenge the 
transfer learning task [16]. 

B. Related Work  

In [17], TL was applied to detect events using PMU 
measurements by transferring relevant labeled data from a 
power system collected in one year (2016) to detect events 
from future instances (2017) in the same power system. In [18] 
TL technique in conjunction with deep learning model was 
utilized to enhance the detection of events in one power system 
using a model pre-trained on another. The use case of using 
PMU recorded data from the Western and Eastern 
Interconnections (WI and EI) in the US demonstrates that the 
use of TL enhances the performance by leveraging labeled data 
from both WI and EI to enhance the detection on WI. This 
model transfers parameters of the pre-trained model, trained on 
EI to be used as the initial parameters of the model trained on 
the data of the WI. As illustrated in Sec. IV, the quality of data 
of the EI is poor compared to data from the WI, so detecting 
events from WI based on EI only might be insufficient. There 
are some limitations of the study reported in [18]: a) its 
proposed model does not detect events from one power system 
based on another without utilizing labeled data from both 
power systems, b) it utilizes a fully supervised learning 

estimator and considers only line, generator, oscillation events, 
and normal/healthy signals.  

C. New Event Detection Approach  

To address the mentioned gaps, our paper extends and 
enhances studies reported in [17, 18] by exploring the benefits 
of knowledge transfer between two independent power 
systems, such as the WI and EI in the USA using a transfer 
function combined with a semi-supervised detector to identify 
events based on minimal labeled data of the source task only, 
and it downgrades to unsupervised mode if no related labeled 
data instances were available in the source power system. 

To address the mentioned issues, we propose the following 
two methods based on TL techniques: 1) Spatial transfer, 
sLocITR (spatial localized instance transfer reduced), which 
leverages labeled data from one power system to detect events 
in another system. Our approach does not require target labels, 
since it relies only on related instances from the source power 
system to detect events from the target power system, while 
the study reported in [18] requires target labels since it 
leverages labeled data from both power systems (source and 
target) to detect events from the target power system. 2) 
Spatiotemporal transfer stLocITR, based on leveraging labeled 
data from one power system integrated with a small number of 
labeled data from another power system to detect future events. 
Table I summarizes the major differences between the 
proposed approach and studies reported in [17, 18]. 

III. METHODOLOGY 

A. Compression and Unification of Data Dimension  
To transfer labeled instances from one power system to 

another, we project time windows (TWs) from the source and 
target datasets of the two power systems with different 
numbers of PMUs to latent spaces of unified dimensions while 
preserving the properties of the original data. This is achieved 
by an Autoencoder, i.e., an unsupervised Neural Network 
(NN) for dimensionality reduction. Autoencoders utilize 
multiple neural computing layers to learn non-linear 
transformations of data to a latent space [19]. Other 
dimensionality reduction techniques such as Principal 
Component Analysis (PCA) were also considered but failed to 
learn a representation that preserves the properties of the 
original data since such techniques are limited to linear 
transformations only [5]. The feature vectors (TWs) from both 
datasets were extended to 200 dimensions by padding with 
zeros, thus standardizing the number of dimensions in the two 

TABLE I 
COMPARING THE PROPOSED METHOD TO TRANSFER LEARNING ALTERNATIVES. 

Study Source Target Transfers Detector Target 
Labels 

[17] WIpast WIfuture Temporally 
Related data 

Semi-
supervised 

Not 
Required 

[18] EI & WI WI Parameters Supervised Required 

sLocITR WI EI Spatially 
Related data 

Semi-
supervised 

Not 
Required 

stLocITR WI & 
EIpast EIfuture 

Spatio-
Temporally 
Related data 

Semi-
supervised 

Not 
Required 

 



 

     

datasets. In the use case with the data from WI and EI, two 
fully connected layers with batch normalization were used to 
learn how to unify the 35-dimensional feature vectors from 
both WI and EI datasets. To enhance the performance of the 
ML models, the unified data were scaled to a standard range 
using Standard Scaler [17], defined as 𝑧 = !"	$

%
. 

B. Comparative Analysis 
A comparative study was conducted to evaluate the 

applicability and effectiveness of the TL method when 
leveraging labeled data from one power system to detect events 
from another. A multitude of ML algorithms of various types 
(unsupervised, supervised, and semi-supervised learning) were 
used as baselines.  

Unsupervised learning-based baseline methods find hidden 
patterns in data without using any labeled data instances, 
which is the only option when labels are not available. On the 
contrary, learning from normal data alone is based on the 
premise that the occurrence of events is uncommon and 
infrequent, which field-recorded PMU data contradicts. The 
performance of the algorithms is degraded by the scarcity of 
labeled data instances [20]. The isolation nearest neighbor 
ensembles (iNNE) method [21], and the k-nearest neighbor 
outlier (kNNO) detection method [4] are used in our study for 
comparison. 

We also considered supervised learning baselines that learn 
from labeled cases. Moreover, supervised learning methods 
assume that the marginal distributions of the WI source 
training data and the EI target test data are similar (no covariate 
shift assumption) which PMU data of both power systems 
contradict [17]. Hence, these approaches might be infeasible to 
train on one power system and detect events from another, due 
to the scarcity of labels and distributional difference. We 
utilized some of the most common and state-of-the-art 
traditional supervised learning methods and compared them 
with alternative learning types, including Logistic Regression 
(LR), Support Vector Machine (SVM), K-Nearest-Neighbor 
(KNN), and Multilayer Perceptron (MLP), available through 
the Scikit-Learn library [22].  

Semi-supervised learning baseline methods are often used 
when larger amounts of labeled data are difficult or impractical 
to obtain, which is applicable for PMU data. The aim is to learn 
a classifier from integrated labeled and unlabeled instances to 
outperform unsupervised and supervised learning algorithms 
when training with an insufficient amount of labeled data [23]. 
For comparison, two semi-supervised learning detectors were 
employed to classify TWs as events or normal operations. One 
detector is the semi-supervised k-nearest neighbor anomaly 
(SSKNNO) detection algorithm [20]. This method 
downgrades to unsupervised mode if no related labeled data 
instances are found in the labeled source data. This is 
determined by a specified threshold. Since the algorithm 
utilizes a distance metric, the number of labeled TWs does not 
influence the detection tasks when well-labeled TWs from the 
same signal pattern are available in the source labeled data. 
This algorithm uses the Euclidean distance to compute the 
similarity between TWs. This similarity measure is not 
applicable when the sizes (dimensions) of TWs are large, 

hence, we modified and enhanced the algorithm by replacing 
the Euclidean distance with the Manhattan distance, since 
Manhattan distance achieved better performance. Another 
semi-supervised baseline method is the semi-supervised 
detection of outliers (SSDO), which is derived from k-means 
clustering [24].  

The proposed TL approach consists of two steps. 1) A 
relevant subset of labeled TWs is selected from WI (source 
dataset Ds) to transfer to the target dataset Dt which contains 
unlabeled TWs from EI. The algorithm transfers a certain TW 
from the WI to EI if its local data distribution is similar in EI 
and there is a lack of labeled cases in that region of EI feature 
space. The transfer function employs unsupervised techniques 
since labels for TWs in Dt are unavailable and the labeled TWs 
in Ds do not affect the transfer decision. 2) A semi-supervised 
learning algorithm computes an anomaly score based on a 
nearest-neighbor technique that considers the related TWs that 
were transferred from WI and the unlabeled target TWs from 
EI. This algorithm takes as an input a partly labeled dataset 
containing the transferred labeled TWs merged with the 
unlabeled target TWs [17].  

LocIT transfers a TW from Ds to Dt if the distributions of 
two subsets are sufficiently similar. This is measured by 
comparing the first and second order statistics using a subset 
of the nearest neighbor in Ds and Dt and is computed as 

 

𝑑&(𝑁1,𝑁2) =
∥∥
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∥1
𝑘 , -  

!!∈(&

𝑥) − -  
!"∈(*

𝑥+1
∥∥
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∥

*

. (1) 

Equation 1 defines the location distance which is the l2-norm 
of the difference of the centroids (i.e., arithmetic mean) 
between two neighborhoods N1 and N2. High values of d1 
imply less similarity and reduce the chance of a transfer. The 
distance between the covariance of two neighborhoods 
(correlation distance) is computed as:  
 

𝑑*(𝑁1,𝑁2) =
∥∥𝐶(& − 𝐶(*∥∥,

∥∥𝐶(&∥∥,
 (2) 

where ∥⋅∥F is the Frobenius norm (the Euclidean norm of a 
matrix), and C is the covariance matrix. High values of d2 
imply that the localized distributions of the Ds and Dt differ. 
The TL algorithm transfers a TW from Ds if the distance to its 
nearest neighbor in Ds and Dt is similar to the average distance 
between any two neighboring instances in Dt.  

Transfer Function. SVM classifier is trained by combining 
the values of d1 and d2. The classifier predicts if a source TW 
fits in the target by considering at the correlation and location 
distance between the neighborhood sets of the TW. The size of 
the neighborhood is specified to control the strictness of the 
instance transfer. A positive training example is created for 
each TW in Dt by identifying its nearest neighbor in Dt and 
computing d1 and d2 on Dt. The negative training examples are 
created by computing for each TW in Dt a feature vector 
consisting of the distances between the neighborhood sets of 
target TW and its farthest neighbor. Finally, each TW from Ds 
is predicted using a trained SVM classifier on Dt using the 
negative and positive training examples [17].  



 

     

The utilized transfer function selects and transfers all related 
data instances, including duplicates and instances that are very 
similar in distance. Due to the distance-based nature of the 
semi-supervised detector, redundant instances do not 
contribute to the classification task, but increase the 
complexity of the algorithm and reduce efficiency. Thus, we 
modified and enhanced the TL method to exclude similar 
instances/duplicates. The Euclidean distance was utilized to 
compute the mean µ of the transferred TWs, and iteratively, 
compute the Euclidean distance of two independent TWs. 
Then, we excluded all TWs for which their 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 < 	µ, 
indicating a certain instance does not contribute to the 
classification task of the TL method, since another TW of the 
same quality (pattern) was found.  

IV. DATA PROCESSING  
PMU Data. We utilize historical field measurements 

collected over two years, 2016-2017 from 38 PMUs placed in 
the WI, and from 178 PMUs placed in the EI in the U.S. electric 
power system. The measurements from EI are collected at 30 
frames per second (fps), while measurements from WI are 
collected at 30 fps or 60 fps. Locations of PMUs and the system 
topology are not provided to us. Some outliers, data duplicates 
and missing data are observed in both datasets but do not affect 
our method significantly [25]. Non-uniform number of PMUs 
and data quality issues make this event detection task complex. 
WI dataset contained higher quality measurements than the EI 
dataset, since EI contains missing data ranging from ~1% to 
~70%, whereas missing data of WI ranges from ~1% to ~30%. 
Thus, we utilize labeled data from WI to detect events from EI, 
without using any labeled data from EI.  

Event Log. Both WI and EI datasets contain phasor 
measurements associated with line outages, transformer 
outages, and fundamental frequency deviations that are labeled 
in the event log. Visual inspection of these events revealed that 
some events evolve from one type to another, hence, they were 
considered “complex” events. Complex events include events 
labeled generator, capacitor, bus, and oscillation. The provided 
event log most likely was obtained from the SCADA data, and 
therefore it contains temporally imprecise event labels (start 
time with a precision of 1-minute). In addition, due to the 
sparsity of PMU locations in the network, log events did not 
necessarily occur in the vicinity of the PMUs used in this study. 
To improve the temporal precision of the log events, visual 
inspection was performed by the domain expert on our team. 
Then, we used a more precise start time of the events confirmed 
through visual inspection. The study reported in [17] 
experimented various dimensions of TWs; 2-second TWs 
resulted in performant classification results; hence, the 
dimension of 2-seconds was used. Table II presents the number 
of labels used for each proposed method.  

Feature Extraction. For each TW and the selected PMU 
device, we calculated the Rectangle Area (RA) features using 
the frequency and positive-sequence voltage magnitude as:  

𝑅𝐴-./,12 = (𝑓34! − 𝑓3)5) ∗ (𝑉34! − 𝑉3)5) (3) 
where fmax and fmin are the maximum and minimum frequency 
values, and Vmax and Vmin are the maximum and minimum 
positive sequence voltage magnitudes, respectively [17]. 
Datasets from WI comprise of feature vectors of 38 RA values, 

where each RA value corresponds to a certain PMU in a certain 
TW. Similarly, feature vectors from EI comprise the feature 
vectors of 178 RA values.  

V. EXPERIMENTAL SETUP  
We propose two TL methods based on different splits of the 

source and target datasets. 1) Spatial transfer, sLocITR, where 
labeled TWs were selected from Ds which consisted of TWs 
from WI and were used to detect events in Dt, which consisted 
of unlabeled TWs from EI. In this experiment, Ds contained the 
entire data of the WI, while Dt contained the entire data of the 
EI. 2) Spatiotemporal, stLocITR, where Ds = WI ∪	EI2016; Dt = 
EI2017; where WI denotes the entire TWs of the WI, EI2016 
denotes the TWs of the EI collected from 2016, used to detect 
events in EI2017 which denotes the TWs of the EI from 2017.  

We answer the following empirical questions: 1) How does 
the proposed TL method perform compared to alternative 
baselines? 2) How does the number of labeled source data 
selected from Ds affect the classification accuracy for events in 
the target domain Dt? The results validate our hypothesis and 
illustrate the benefits of employing TL techniques in 
conjunction with a semi-supervised detector to leverage 
knowledge and detect events based on minimal labeled data. 
To address question 2, we selected the top p related instances 
excluding redundant/similar instances to experiment how the 
proportion of labeled data affects the performance; where p	∈	
{20,	 51,	 103,	 259,	 415,	 570,	 726}	 corresponding to 1% to 
25% of labeled source data instances. 

The performance of the TL algorithm was evaluated by 
comparing it to common conventional ML algorithms of 
varying learning types described in Sec. III (i.e., unsupervised, 
supervised, and semi-supervised). The following metrics were 
used to evaluate the algorithms: The area under the receiver 
operating characteristic (AUROC), Precision, Recall, and F-1 
score [26]. 
VI. RESULTS AND DISCUSSION 

A. WI and EI Distribution Comparison  
To validate the applicability of the TL on PMU data, we 

utilized Kolmogorov-Smirnov (KS) metric to test if the 
cumulative distribution functions of the source WI and target 
EI datasets are similar. KS metric was applied to compare two 
independent samples on the source and target system, where 
the source is represented as a 1-dimensional array that contains 
features from the WI and the target is a 1-dimensional array 
that contains features from the EI. We obtained p-values by 
iteratively computing similarities between two independent 
samples. The maximum p-value was 2.7𝑒"&6, thus, since the 
obtained p-value is very small, we can safely reject the null 
hypothesis, implying distributions of WI and EI are different. 

TABLE II 
NUMBER OF LABELS PER CATEGORY FROM BOTH WI AND EI DATASETS.  

Method 
# Event 
Labels 

from WI 

# Normal 
Labels from 

WI 

# Event 
Labels 
from EI 

# Normal 
Labels from 

EI 
sLocITR 1038 1846 0 0 
stLocITR 1038 1846 849 762 

 



 

     

B. Transfer Learning versus Baseline Event Detectors 
Table III presents and compares the performance of the 

proposed TL methods stLocITR and sLocITR to alternative 
baselines of various learning types. Consistent results 
demonstrate the effectiveness of the proposed methods and 
show that both methods outperformed fully supervised, semi-
supervised, and unsupervised algorithms. The sLocITR 
method selected and transferred 570 (out of 2,884) related data 
instances (543 abnormal events + 27 normal) excluding 
redundant instances from WI to detect events from EI. 
stLocITR transferred additional 362 (out of 1,611) temporally 
disjoint related cases from EI, resulting in increased AUROC 
by 11% when compared to the best performing supervised and 
unsupervised learning algorithms, and a 5% improvement 
when compared to the best performing semi-supervised 
learning algorithms. sLocITR increases the AUROC by 12% 
when compared with the best supervised learning algorithm, 
10% improvement when compared with the best unsupervised 
learning algorithm, and 3% improvement when compared with 
the best semi-supervised learning algorithm. Unsupervised 
learning algorithm, kNNO outperformed supervised variant 
using the Spatial split, indicating that the source and target 
label sets differ significantly. In other words, there are many 
input-output relationships in the target domain that do not have 
similar counterparts in the source. However, the underlying 
anomaly patterns remain similar. Unsupervised learning is 
based on detecting anomaly patterns only from the input 
signals, whereas supervised algorithms attempt to learn the 
relationship between the input signals and the output labels, 
which might be misinforming for some cases due to the 
distributional difference (label sets) of both interconnections.  

Experiments provide evidence that TL-based methods are 
more accurate than unsupervised, supervised, and semi-
supervised alternatives for detecting events from one power 
system based on labeled data of another.  
C. The Effect of Using Various Quantities of Labeled Data 

Often, obtaining event logs or labeled data for event 
detection tasks is non-trivial or costly. Thus, we studied the 
effect of using various amounts of labeled source data to assess 
what number of labeled data is adequate to detect events from 
the EI of the U.S.A. based on minimal labeled data from the 
WI of the U.S.A. (Spatial Split). We selected from Ds 20, 51, 
103, 259, 415, 570, and 726 events to detect events from the 
target data Dt. We repeated the experiments 10 times and 
reported AUROCs, and their corresponding two-sided 
confidence intervals calculated at 95% confidence level, 
presented in the shaded area of Fig. 1. We selected the best 
methods from various learning types (i.e., fully supervised, 
semi-supervised, and unsupervised) and compared them with 
the proposed TL method stLocITR.  

Fig. 1 shows that the TL method outperforms supervised 
learning on a large benchmark since there is a distributional 
difference between the Ds and Dt. Results show that the TL 
method outperforms baselines with varying quantities of 
labeled data incorporated. The straight line of the unsupervised 
learning algorithm kNNO with no labels incorporated is 
included for comparison. When sufficient labeled data are 
incorporated, semi-supervised SSKNNO outperforms 
unsupervised learning. The increase in labeled source data is 
not found to increase the performance of the supervised 
algorithm, since the source and target label sets differ greatly. 
This study demonstrates that transferring 570 labeled data 
instances from the WI are sufficient to detect events from the 
3,085 instances of the EI PMU data. We randomly select a 
proportion of labeled data from Ds to train supervised and 
semi-supervised learning algorithms, whereas the TL 
algorithm uses the most relevant instances from Ds. When 
comparing sLocITR with a supervised learning algorithm, Fig. 
1 shows that selecting the top relevant instances results in not 
only better performance, but a more stable model since 
sLocITR has a significantly lower two-sided confidence 
interval than RF. Table IV illustrates event types when 
transferring the top selected 100, 300, and 500 instances. 

TABLE III 
COMPARATIVE ANALYSIS OF THE UTILIZED TRANSFER LEARNING METHODS 

TO VARIOUS BASELINES USING THE SELECTED LABELED TWS FROM DS. 

Method Learning 
Type Model AUC Precision Recall F1 

Spatio-
temporal 

Transfer 
Learning stLocITR 0.90 0.90 0.90 0.90 

Semi-
supervised 

SSKNNO 0.85 0.86 0.86 0.86 

SSDO 0.84 0.86 0.85 0.85 

Supervised 

RF 0.79 0.79 0.79 0.79 
KNN 0.79 0.80 0.78 0.79 
MLP 0.74 0.82 0.73 0.77 
SVM 0.72 0.81 0.70 0.75 

Unsupervised kNNO 0.79 0.80 0.79 0.79 
iNNE 0.74 0.75 0.73 0.74 

Spatial 

Transfer 
Learning sLocITR 0.87 0.87 0.87 0.87 

Semi-
supervised 

SSKNNO 0.84 0.84 0.84 0.84 
SSDO 0.83 0.85 0.84 0.84 

Supervised 

RF 0.75 0.77 0.74 0.75 
KNN 0.72 0.75 0.71 0.73 
MLP 0.68 0.77 0.66 0.71 
SVM 0.65 0.77 0.63 0.69 

Unsupervised kNNO 0.77 0.79 0.76 0.77 
iNNE 0.74 0.76 0.73 0.74 

 

Fig 1. Comparing the performance of the proposed method sLocITR 
to baselines based on varying number of labeled source data evaluated 
using AUROC and their corresponding two-sided confidence interval 

calculated at 95% confidence level.  



 

     

This experiment shows that supervised learning algorithms 
are infeasible when leveraging knowledge from one 
interconnection to another due to covariate and concept shift 
assumptions and when labels are scarce and difficult to obtain. 
D. Misclassified Events 

To further comprehend the errors made by the TL method, a 
domain expert visually inspected the misclassified TWs. The 
most common occurrence of these TWs is the presence of low-
frequency oscillations that the algorithm was unreliable in 
detecting as only 0.3% of all events in WI were labeled as 
oscillations even though these events are more common. Low-
frequency oscillation events are difficult to capture because 
their impact is most obvious after performing modal analysis.  

VII. CONCLUSION 
This study shows that the TL method yields a substantial 
increase in AUROC compared with other state-of-the-art ML 
algorithms (fully supervised, semi-supervised, and 
unsupervised). Experiments show that this method is more 
feasible than alternative baselines when conventional ML 
modeling assumptions are violated and outperforms the 
baselines when reusing labeled data instances from one power 
system to detect events from another. Furthermore, this 
method can detect events based on a small amount of 
transferred relevant labeled data from another power system.  
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TABLE IV.  
EVENTS TRANSFERRED PER CATEGORY AMONG TOP 100, 300, AND 500.  

# Labeled 
Events Line Frequency Transformer Complex Normal 

100 68 15 3 6 8 
300 165 71 3 45 16 
500 269 103 3 103 22  

 


