Generalization-Aware Structured Regression towards Balancing Bias and Variance

Martin Pavlovski 1,2 , Fang Zhou 1 , Nino Arsov 2 , Ljupco Kocarev², Zoran Obradovic¹

Center for Data Analytics and Biomedical Informatics, Temple University, Philadelphia, PA, USA ² Macedonian Academy of Sciences and Arts, Skopje, Republic of Macedonia

Abstract

Attaining the proper balance between underfitting and overfitting is one of the central challenges in machine learning. It has been approached mostly by deriving bounds on generalization risks of learning algorithms. Such bounds are, however, rarely controllable. In this study, a novel bias-variance balancing objective function is introduced in order to improve generalization performance. By utilizing distance correlation, this objective function is able to indirectly control a stability-based upper bound on a model's expected true risk. In addition, the Generalization-Aware Collaborative Ensemble Regressor (GLACER) is developed, a model that bags a crowd of structured regression models. Allowing its base components to collaborate in a fashion that minimizes the proposed objective function, GLACER has shown to outperform a broad range of both traditional and structured regression models, while sustaining stable predictions.

The Notion of Generalization

• Intuition: Striking the proper balance between *underfitting* and *overfitting*

Experiment #1: Generalization Capability

- In general, structured variants perform better than unstructured
- While the baselines' MSEs decrease with the increased size of training data, GLACER is more accurate and sustains stable predictions when only 50% training data is available
- \Rightarrow This is consistent in case smaller/larger training fractions are used

Model \setminus Frac.	50%
Linear Reg.	2.3 ± 0.05
Structured Linear Reg.	1.5 ± 0.05
Neural Network	1.4 ± 0.21
Structured Neural Network	1.0 ± 0.18
Support Vector Reg.	2.4 ± 0.12
Structured Support Vector Reg.	1.8 ± 0.12
Subbagging	1.3 ± 0.01
Structured Subbagging	0.9 ± 0.03
Random Forest	1.6 ± 0.05
Structured Random Forest	1.4 ± 0.03

 \Rightarrow A fundamental challenge in supervised learning

• Underfitting

- high bias

- Avoided by **reducing** the *empirical risk* R_{emp}

• Overfitting

- high variance

- Reduces as the *empirical risk* (training error) becomes a **valid estimate** of the *true unknown risk* (test error):

 $R_{qen} = |R_{emp} - R_{true}|$

• **Objective:** Minimize R_{emp} , while maintaining low R_{gen}

Main Theoretical Insight

- R_{emp} can be easily minimized since it is "measurable" from the observed data
- R_{gen} is often **impossible to determine** since R_{true} is unknown
 - But, there are stability-based upper bounds derived on the *expected true risk* [1,2]:

Expected true risk of a learning algorithm \mathcal{L}

 $\mathbb{E}_{\mathcal{D}}[\mathbb{E}_{h|\mathcal{D}}[R_{emp}(h,\mathcal{D})]]$ $1 - \mathcal{S}(\ell(\cdot, h), z_{trn})$ Mutual stability between the loss of h Expected empirical risk of a and a random training example z_{trn} hypothesis h w.r.t. a training set \mathcal{D}

• Design of a **bias-variance balancing objective function**

$$R_{obj}(h, \mathcal{D}) = \sqrt{R_{emp}(h, \mathcal{D})^2 + dCorr(\ell(\cdot, h), z_{trn})^2}$$

• Aims to tighten the upper bound (*) by: 1) minimizing the empirical risk $R_{emp}(h, \mathcal{D})$

A

(*)

Frac.	Without <i>dCorr</i>	With dCorr
10%	0.74	0.72
50%	0.44	0.25
100%	0.53	0.25

verage testing MSE, obtained before and after
using $dCorr$ within R_{obj} .

GLACER	$\textbf{0.3} \pm \textbf{0.01}$
Non-convex Network Lasso	1.3 ± 0.05
Convex Network Lasso	1.2 ± 0.04
Structured LS Boosting	0.9 ± 0.02
LS Boosting	2.8 ± 0.05

Average testing MSE when 50% of the training data is supplied.

- GLACER manifests lower average MSEs when dCorr is used in R_{obj} \Rightarrow This is consistent as the training data increases
- Without dCorr, the avg. MSE deteriorates once the training fraction increases from 50% to 100% \Rightarrow Might be an indication of overfitting
- Incorporating dCorr into R_{obj} prevents large increases in MSE

Sacramento Real-Estate	Model
• Nodes: 985 real estate transactions were observed in the Greater Sacramento area	Linear
	Structu
	Neural
	Structu
• Fostures # of bodrooms and bothrooms bouse	Suppor
 Features: # of bedrooms and bathrooms, house area in square feet, location in terms of latitude – and longitude Structure: based on geospatial similarity 	Structu
	Subbag
	Structu
	Rando
	Structu
	_ ~ _

• **Train/test** ratio used is the same as in [5]

Model	MSE
Linear Reg.	0.507 ± 0.025
Structured Linear Reg.	0.465 ± 0.024
Neural Network	0.516 ± 0.026
Structured Neural Network	0.463 ± 0.023
Support Vector Reg.	0.515 ± 0.031
Structured Support Vector Reg.	0.479 ± 0.034
Subbagging	0.304 ± 0.017
Structured Subbagging	0.262 ± 0.015
Random Forest	0.283 ± 0.020
Structured Random Forest	0.249 ± 0.015
LS Boosting	0.288 ± 0.015
Structured LS Boosting	0.250 ± 0.017
Convex Network Lasso	0.368 ± 0.013
Non-convex Network Lasso	0.380 ± 0.017

2) utilizing **distance correlation** [3,4] to make the loss w.r.t. to given data as independent as possible of the data themselves and thus to indirectly control the **mutual stability term**

Note: $R_{obj}(h, D)$ is defined for a hypothesis h selected by any supervised learning algorithm \mathcal{L} \Rightarrow In this study, this objective is utilized in a structured regression setting.

Methodology

Structured Regression by Gaussian CRFs

A Gaussian CRF (GCRF) models the conditional distribution:

$$P(\mathbf{y}|\mathbf{X}) = \frac{1}{Z} \exp\left\{-\alpha \sum_{i=1}^{N} (y_i - \phi(\mathbf{x}_i))^2 - \beta \sum_{i \sim j} S_{ij} (y_i - y_j)^2\right\}$$

Proposed Model

GeneraLization-Aware Collaborative Ensemble Regressor (GLACER)

Task: predict the housing prices

Medicare Readmissions

- Nodes: 1000 hospital records referring to hospitals with more than ~ 150 readmissions
- Features: # of discharges, excess readmission ratio, estimated/expected readmission rates
- Structure: similarities between hospital readmissions
- Period: 36 months (July 2012 June 2015)

Task: predict the number of hospital readmissions

Testing MSE, averaged over 10 random splits.

GLACER - Discussion:

- Outperforms alternatives by $\sim 10-56\%$ and more than 49% when predicting housing prices and hospital readmissions, respectively.
- Achieves statistically significant improvements \Rightarrow *p*-values are smaller than 0.01 for Sacramento, and 0.021 for Medicare.
- Manifests stable predictions \Rightarrow tight confidence interval for its average MSE.

Acknowledgments

This research was supported in part by the Defense Advanced Research Projects Agency (DARPA) and the Army Research Office (ARO) under Contract no. DARPA-THOR-W911NF-16-C-0050, an IQVIA Big Data Analytics contract, NSF BIGDATA grant 14476570, and ONR/ONR Global grant N62909-16-1-2222.

 $\textbf{0.225} \pm \textbf{0.005}$ GLACER

Testing MSE, averaged over 10 random splits.

	Model	MSE
	Linear Reg.	1755.708 ± 616.119
	Structured Linear Reg.	525.551 ± 196.065
	Neural Network	2037.421 ± 1199.805
	Structured Neural Network	1618.547 ± 1192.462
n	Support Vector Reg.	1359.342 ± 697.910
	Structured Support Vector Reg.	504.076 ± 221.228
	Subbagging	441.524 ± 101.065
	Structured Subbagging	234.505 ± 74.378
	Random Forest	508.294 ± 110.988
	Structured Random Forest	247.406 ± 35.814
	LS Boosting	595.289 ± 136.174
	Structured LS Boosting	182.006 ± 24.919
	(Non-)convex Network Lasso	5012.614 ± 768.945
	GLACER	$\textbf{73.183} \pm \textbf{9.032}$

Results

Experiments on Synthetic Data • Examples: 3000 input-output pairs

- input features: normally distributed

- outputs: parameterized polynomials with uniformly distributed parameters

• Structure: generated using an Erdős-Rényi random graph model

References

 (F_M)

- [1] Alabdulmohsin, I.: Algorithmic stability and uniform generalization. In: Advances in Neural Information Processing Systems, pp. 19-27 (2015)
- [2] Alabdulmohsin, I.: An information-theoretic route from generalization in expectation to generalization in probability. In: Artificial Intelligence and Statistics, pp. 92-100 (2017)
- [3] Szekely, G. J., Rizzo, M. L., Bakirov, N. K.: Measuring and testing dependence by correlation of distances. *The annals of statistics* 35(6), 2769-2794 (2007)
- [4] Szekely, G. J., Rizzo, M. L.: Brownian distance covariance. The annals of applied statistics, 1236-1265 (2009)
- [5] Hallac, D., Leskovec, J., Boyd, S.: Network lasso: Clustering and optimization in large graphs. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 387-396 (2015)

Corresponding author: Zoran Obradovic (zoran.obradovic@temple.edu) IJCAI-18, THE 27TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, STOCKHOLM, SWEDEN, JULY 2018