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Abstract
Attaining the proper balance between underfitting and overfitting is one of the central challenges in machine learn-
ing. It has been approached mostly by deriving bounds on generalization risks of learning algorithms. Such bounds
are, however, rarely controllable. In this study, a novel bias-variance balancing objective function is introduced in
order to improve generalization performance. By utilizing distance correlation, this objective function is able to
indirectly control a stability-based upper bound on a model’s expected true risk. In addition, the Generalization-
Aware Collaborative Ensemble Regressor (GLACER) is developed, a model that bags a crowd of structured re-
gression models. Allowing its base components to collaborate in a fashion that minimizes the proposed objective
function, GLACER has shown to outperform a broad range of both traditional and structured regression models,
while sustaining stable predictions.

The Notion of Generalization
• Intuition: Striking the proper balance between underfitting and overfitting
⇒ A fundamental challenge in supervised learning

•Underfitting
- high bias
- Avoided by reducing the empirical risk Remp

•Overfitting
- high variance
- Reduces as the empirical risk (training error) becomes a valid estimate of the true unknown risk

(test error):
Rgen = |Remp −Rtrue|

•Objective: Minimize Remp, while maintaining low Rgen

Main Theoretical Insight
•Remp can be easily minimized since it is “measurable” from the observed data
•Rgen is often impossible to determine since Rtrue is unknown

- But, there are stability-based upper bounds derived on the expected true risk [1,2]:

R̂true(L)︸ ︷︷ ︸
Expected true risk of
a learning algorithm L

≤ ED[Eh|D[Remp(h,D)]]︸ ︷︷ ︸
Expected empirical risk of a
hypothesis h w.r.t. a training set D

+ 1− S(`(·, h), ztrn)︸ ︷︷ ︸
Mutual stability between the loss of h
and a random training example ztrn

(∗)

•Design of a bias-variance balancing objective function

Robj(h,D) =
√
Remp(h,D)2 + dCorr(`(·, h), ztrn)2

•Aims to tighten the upper bound (∗) by:
1) minimizing the empirical risk Remp(h,D)

2) utilizing distance correlation [3,4] to make the loss w.r.t. to given data as independent as possi-
ble of the data themselves and thus to indirectly control the mutual stability term

Note: Robj(h,D) is defined for a hypothesis h selected by any supervised learning algorithm L
⇒ In this study, this objective is utilized in a structured regression setting.

Methodology
Structured Regression by Gaussian CRFs
A Gaussian CRF (GCRF) models the conditional distribution:

P (y|X) =
1

Z
exp

−α
N∑
i=1

(yi − φ(xi))
2 − β

∑
i∼j

Sij
(
yi − yj

)2


Proposed Model
GeneraLization-Aware Collaborative Ensemble Regressor (GLACER)

Input:
Training set D
Similarity matrix S
# of components M
Sub-sampling fraction η

Sample D and S (omitted for brevity) M times
without replacement using the sub-sampling fraction η

Train a single GCRF component Fm (on top of a least-
squares booster) on each Dm and its corresponding Sm

Loop
- determine the worst-fit example for each component
- exchange the worst-fit examples between the pair of

GCRFs that fosters the highest decrease in Robj(Φ,D)

Repeat until no exchange can further decrease Robj(Φ,D)

Prediction: Φ(X,S) = 1
M

∑M
m=1 Fm(X,S)

Results
Experiments on Synthetic Data
• Examples: 3000 input-output pairs

- input features: normally distributed
- outputs: parameterized polynomials with uniformly distributed parameters

• Structure: generated using an Erdős-Rényi random graph model

Experiment #1: Generalization Capability

• In general, structured variants perform better
than unstructured

•While the baselines’ MSEs decrease with the
increased size of training data, GLACER is
more accurate and sustains stable predictions
when only 50% training data is available

⇒ This is consistent in case smaller/larger
training fractions are used

Model \ Frac. 50%
Linear Reg. 2.3 ± 0.05
Structured Linear Reg. 1.5 ± 0.05
Neural Network 1.4 ± 0.21
Structured Neural Network 1.0 ± 0.18
Support Vector Reg. 2.4 ± 0.12
Structured Support Vector Reg. 1.8 ± 0.12
Subbagging 1.3 ± 0.01
Structured Subbagging 0.9 ± 0.03
Random Forest 1.6 ± 0.05
Structured Random Forest 1.4 ± 0.03
LS Boosting 2.8 ± 0.05
Structured LS Boosting 0.9 ± 0.02
Convex Network Lasso 1.2 ± 0.04
Non-convex Network Lasso 1.3 ± 0.05
GLACER 0.3 ± 0.01

Table 8: Average testing MSE when 50%, of the training data is
supplied.

Frac.
Robj Without dCorr With dCorr

10% 0.74 0.72
50% 0.44 0.25
100% 0.53 0.25

Table 9: Average testing MSE, obtained before and after using
dCorr within Robj .

Model MSE
Linear Reg. 0.507 ± 0.025
Structured Linear Reg. 0.465 ± 0.024
Neural Network 0.516 ± 0.026
Structured Neural Network 0.463 ± 0.023
Support Vector Reg. 0.515 ± 0.031
Structured Support Vector Reg. 0.479 ± 0.034
Subbagging 0.304 ± 0.017
Structured Subbagging 0.262 ± 0.015
Random Forest 0.283 ± 0.020
Structured Random Forest 0.249 ± 0.015
LS Boosting 0.288 ± 0.015
Structured LS Boosting 0.250 ± 0.017
Convex Network Lasso 0.368 ± 0.013
Non-convex Network Lasso 0.380 ± 0.017
GLACER 0.225 ± 0.005

Table 10: Average testing MSE obtained on real-world datasets.

Model MSE
Linear Reg. 1755.708 ± 616.119
Structured Linear Reg. 525.551 ± 196.065
Neural Network 2037.421 ± 1199.805
Structured Neural Network 1618.547 ± 1192.462
Support Vector Reg. 1359.342 ± 697.910
Structured Support Vector Reg. 504.076 ± 221.228
Subbagging 441.524 ± 101.065
Structured Subbagging 234.505 ± 74.378
Random Forest 508.294 ± 110.988
Structured Random Forest 247.406 ± 35.814
LS Boosting 595.289 ± 136.174
Structured LS Boosting 182.006 ± 24.919
(Non-)convex Network Lasso 5012.614 ± 768.945
GLACER 73.183 ± 9.032

Table 11: Average testing MSE obtained on real-world datasets.

Average testing MSE when 50% of the training
data is supplied.

Experiment #2: Influence of dCorr

Model \ Frac. 50%
Linear Reg. 2.3 ± 0.05
Structured Linear Reg. 1.5 ± 0.05
Neural Network 1.4 ± 0.21
Structured Neural Network 1.0 ± 0.18
Support Vector Reg. 2.4 ± 0.12
Structured Support Vector Reg. 1.8 ± 0.12
Subbagging 1.3 ± 0.01
Structured Subbagging 0.9 ± 0.03
Random Forest 1.6 ± 0.05
Structured Random Forest 1.4 ± 0.03
LS Boosting 2.8 ± 0.05
Structured LS Boosting 0.9 ± 0.02
Convex Network Lasso 1.2 ± 0.04
Non-convex Network Lasso 1.3 ± 0.05
GLACER 0.3 ± 0.01

Table 8: Average testing MSE when 50%, of the training data is
supplied.

Frac.
Robj Without dCorr With dCorr

10% 0.74 0.72
50% 0.44 0.25
100% 0.53 0.25

Table 9: Average testing MSE, obtained before and after using
dCorr within Robj .

Model MSE
Linear Reg. 0.507 ± 0.025
Structured Linear Reg. 0.465 ± 0.024
Neural Network 0.516 ± 0.026
Structured Neural Network 0.463 ± 0.023
Support Vector Reg. 0.515 ± 0.031
Structured Support Vector Reg. 0.479 ± 0.034
Subbagging 0.304 ± 0.017
Structured Subbagging 0.262 ± 0.015
Random Forest 0.283 ± 0.020
Structured Random Forest 0.249 ± 0.015
LS Boosting 0.288 ± 0.015
Structured LS Boosting 0.250 ± 0.017
Convex Network Lasso 0.368 ± 0.013
Non-convex Network Lasso 0.380 ± 0.017
GLACER 0.225 ± 0.005

Table 10: Average testing MSE obtained on real-world datasets.

Model MSE
Linear Reg. 1755.708 ± 616.119
Structured Linear Reg. 525.551 ± 196.065
Neural Network 2037.421 ± 1199.805
Structured Neural Network 1618.547 ± 1192.462
Support Vector Reg. 1359.342 ± 697.910
Structured Support Vector Reg. 504.076 ± 221.228
Subbagging 441.524 ± 101.065
Structured Subbagging 234.505 ± 74.378
Random Forest 508.294 ± 110.988
Structured Random Forest 247.406 ± 35.814
LS Boosting 595.289 ± 136.174
Structured LS Boosting 182.006 ± 24.919
(Non-)convex Network Lasso 5012.614 ± 768.945
GLACER 73.183 ± 9.032

Table 11: Average testing MSE obtained on real-world datasets.

Average testing MSE, obtained before and after
using dCorr within Robj.

•GLACER manifests lower average MSEs when dCorr is used in Robj
⇒ This is consistent as the training data increases
•Without dCorr, the avg. MSE deteriorates once the training fraction increases from 50% to 100%
⇒Might be an indication of overfitting
• Incorporating dCorr into Robj prevents large increases in MSE

Sacramento Real-Estate

•Nodes: 985 real estate transactions were
observed in the Greater Sacramento area

• Features: # of bedrooms and bathrooms, house
area in square feet, location in terms of latitude
and longitude

• Structure: based on geospatial similarity

• Train/test ratio used is the same as in [5]

Task: predict the housing prices

Model \ Frac. 50%
Linear Reg. 2.3 ± 0.05
Structured Linear Reg. 1.5 ± 0.05
Neural Network 1.4 ± 0.21
Structured Neural Network 1.0 ± 0.18
Support Vector Reg. 2.4 ± 0.12
Structured Support Vector Reg. 1.8 ± 0.12
Subbagging 1.3 ± 0.01
Structured Subbagging 0.9 ± 0.03
Random Forest 1.6 ± 0.05
Structured Random Forest 1.4 ± 0.03
LS Boosting 2.8 ± 0.05
Structured LS Boosting 0.9 ± 0.02
Convex Network Lasso 1.2 ± 0.04
Non-convex Network Lasso 1.3 ± 0.05
GLACER 0.3 ± 0.01

Table 8: Average testing MSE when 50%, of the training data is
supplied.

Frac.
Robj Without dCorr With dCorr

10% 0.74 0.72
50% 0.44 0.25
100% 0.53 0.25

Table 9: Average testing MSE, obtained before and after using
dCorr within Robj .

Model MSE
Linear Reg. 0.507 ± 0.025
Structured Linear Reg. 0.465 ± 0.024
Neural Network 0.516 ± 0.026
Structured Neural Network 0.463 ± 0.023
Support Vector Reg. 0.515 ± 0.031
Structured Support Vector Reg. 0.479 ± 0.034
Subbagging 0.304 ± 0.017
Structured Subbagging 0.262 ± 0.015
Random Forest 0.283 ± 0.020
Structured Random Forest 0.249 ± 0.015
LS Boosting 0.288 ± 0.015
Structured LS Boosting 0.250 ± 0.017
Convex Network Lasso 0.368 ± 0.013
Non-convex Network Lasso 0.380 ± 0.017
GLACER 0.225 ± 0.005

Table 10: Average testing MSE obtained on real-world datasets.

Model MSE
Linear Reg. 1755.708 ± 616.119
Structured Linear Reg. 525.551 ± 196.065
Neural Network 2037.421 ± 1199.805
Structured Neural Network 1618.547 ± 1192.462
Support Vector Reg. 1359.342 ± 697.910
Structured Support Vector Reg. 504.076 ± 221.228
Subbagging 441.524 ± 101.065
Structured Subbagging 234.505 ± 74.378
Random Forest 508.294 ± 110.988
Structured Random Forest 247.406 ± 35.814
LS Boosting 595.289 ± 136.174
Structured LS Boosting 182.006 ± 24.919
(Non-)convex Network Lasso 5012.614 ± 768.945
GLACER 73.183 ± 9.032

Table 11: Average testing MSE obtained on real-world datasets.

Testing MSE, averaged over 10 random splits.
Medicare Readmissions

•Nodes: 1000 hospital records referring to
hospitals with more than ∼150 readmissions

• Features: # of discharges, excess readmission
ratio, estimated/expected readmission rates

• Structure: similarities between hospital
readmissions

• Period: 36 months (July 2012 – June 2015)

Task: predict the number of hospital readmissions

Model \ Frac. 50%
Linear Reg. 2.3 ± 0.05
Structured Linear Reg. 1.5 ± 0.05
Neural Network 1.4 ± 0.21
Structured Neural Network 1.0 ± 0.18
Support Vector Reg. 2.4 ± 0.12
Structured Support Vector Reg. 1.8 ± 0.12
Subbagging 1.3 ± 0.01
Structured Subbagging 0.9 ± 0.03
Random Forest 1.6 ± 0.05
Structured Random Forest 1.4 ± 0.03
LS Boosting 2.8 ± 0.05
Structured LS Boosting 0.9 ± 0.02
Convex Network Lasso 1.2 ± 0.04
Non-convex Network Lasso 1.3 ± 0.05
GLACER 0.3 ± 0.01

Table 8: Average testing MSE when 50%, of the training data is
supplied.

Frac.
Robj Without dCorr With dCorr

10% 0.74 0.72
50% 0.44 0.25
100% 0.53 0.25

Table 9: Average testing MSE, obtained before and after using
dCorr within Robj .

Model MSE
Linear Reg. 0.507 ± 0.025
Structured Linear Reg. 0.465 ± 0.024
Neural Network 0.516 ± 0.026
Structured Neural Network 0.463 ± 0.023
Support Vector Reg. 0.515 ± 0.031
Structured Support Vector Reg. 0.479 ± 0.034
Subbagging 0.304 ± 0.017
Structured Subbagging 0.262 ± 0.015
Random Forest 0.283 ± 0.020
Structured Random Forest 0.249 ± 0.015
LS Boosting 0.288 ± 0.015
Structured LS Boosting 0.250 ± 0.017
Convex Network Lasso 0.368 ± 0.013
Non-convex Network Lasso 0.380 ± 0.017
GLACER 0.225 ± 0.005

Table 10: Average testing MSE obtained on real-world datasets.

Model MSE
Linear Reg. 1755.708 ± 616.119
Structured Linear Reg. 525.551 ± 196.065
Neural Network 2037.421 ± 1199.805
Structured Neural Network 1618.547 ± 1192.462
Support Vector Reg. 1359.342 ± 697.910
Structured Support Vector Reg. 504.076 ± 221.228
Subbagging 441.524 ± 101.065
Structured Subbagging 234.505 ± 74.378
Random Forest 508.294 ± 110.988
Structured Random Forest 247.406 ± 35.814
LS Boosting 595.289 ± 136.174
Structured LS Boosting 182.006 ± 24.919
(Non-)convex Network Lasso 5012.614 ± 768.945
GLACER 73.183 ± 9.032

Table 11: Average testing MSE obtained on real-world datasets.Testing MSE, averaged over 10 random splits.

GLACER - Discussion:

•Outperforms alternatives by ∼10-56% and more than 49% when predicting housing prices and
hospital readmissions, respectively.
•Achieves statistically significant improvements⇒ p-values are smaller than 0.01 for Sacramento,

and 0.021 for Medicare.
•Manifests stable predictions⇒ tight confidence interval for its average MSE.
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