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Abstract
Attaining the proper balance between underfitting and overfitting is one of the central challenges in machine learn- Experiment #1: Generalization Capability
ing. It has been approached mostly by deriving bounds on generalization risks of learning algorithms. Such bounds . Model \ Frac. 50 %
are, however, rarely controllable. In this study, a novel bias-variance balancing objective function is introduced in e In general, structured variants perform better i R 23 + 0.05
order to improve generalization performance. By utilizing distance correlation, this objective function is able to than unstructured Inear Reg. . ' ‘
indirectly control a stability-based upper bound on a model’s expected true risk. In addition, the Generalization- Structured Linear Reg. 1.5 + 0.05
Aware Collaborative Ensemble Regressor (GLACER) is developed, a model that bags a crowd of structured re- , . : . Neural Network 1.4 £0.21
gression models. Allowing its base components to collaborate in a fashion that minimizes the proposed objective ¢ Whﬂe the b.asehnes . MSES decrease with .the Structured Neural Network 1.0+ 0.18
fun.ction, QLACER has ShO.WI.l to outperform a broad range of both traditional and structured regression models, increased size of tralnlng data, GLACER.IS Support Vector Reg. 24 +0.12
while sustaining stable predictions. more accurate and .su.stalns sta.ible p?edmtlons Structured Support Vector Reg. 1.8 + 0.12
when only 50% training data is available Subbagging 13 +001
1 1zati . . . tructured Subbaggin 9 +0.
The Notion of Generalization = This 1s consistent 1n case smaller/larger > > ssls 0.9 £ 0.03
training fractions are used Random Forest 1.6+0.05
¢ Intuition: Striking the proper balance between underfitting and overfitting g Structured Random Forest 1.4 4+ 0.03
= A fundamental challenge in supervised learning Experiment #2: Influence of dCorr LS Boosting | 2.8 £0.05
Structured LS Boosting 0.9 + 0.02
e Underfitting P Fon; Without dCorr With dCorr Convex Network Lasso 1.2 10.04
bioh bi rac. Non-convex Network Lasso 1.3 £+ 0.05
- high bias . B | 10% 0.74 0.72 GLACER 0.3 £0.01
- Avoided by reducing the empirical risk Repmy 50% 0.44 0.25 . —
100 % 0.53 0.25 Average testing MSE when 50% of the training
. data 1s supplied.
e Overfitting Average testing MSE, obtained before and after
- high variance using dCorr within R;.

- Reduces as the empirical risk (training error) becomes a valid estimate of the true unknown risk
(test error):

e GLACER manifests lower average MSEs when dC'orr is used in R,
= This 1s consistent as the training data increases

Roen = |R — R
gen = | Remp truc| e Without dCorr, the avg. MSE deteriorates once the training fraction increases from 50% to 100%

¢ Objective: Minimize Rep,p, while maintaining low Rgen = Might be an indication of overfitting

e Incorporating dCorr into R,,,; prevents large increases in MSE

Main Theoretical Insight

Sacramento Real-Estate Model MSE
® Remp can be easily minimized since it is “measurable’ from the observed data Linear Reg. 0.507 + 0.025
® Rgen 1s often impossible to determine since 24y 1S unknown e Nodes: 985 real estate transactions were Structured Linear Reg. 0.465 £+ 0.024
- But, there are stability-based upper bounds derived on the expected true risk [1,2]: observed in the Greater Sacramento area Neural Network 0.516 + 0.026
. , , Stk Structured Neural Network 0.463 £+ 0.023

R < IE K, pl R . D + 1 — v h), 2 *

Rtme,_/( ) - DI, ‘D[ jmp ( )H N ( (V ) tmz ) e Features: # of bedrooms and bathrooms, house glﬁ%ﬁigﬁgﬁ)r I;ftg'vec tor Re 82;3 i 88231

Expected true risk of Expected empirical risk o a Mutual stability between the loss of h area in square feet, location in terms of latitude = >UPP & °
a learning algorithm £ hypothesis & w.r.t. a training set D and a random training example z,., : Subbagging 0.304 £ 0.017
and longitude Structured Subbagging 0.262 + 0.015
e Design of a bias-variance balancing objective function Random Forest 0.283 £ 0.020
> > e Structure: based on geospatial similarity Structured Random Forest 0.249 & 0.015
Rop;(h, D) = \/ Remp(h, D)= 4 dCorr(£(-; h), 2trn) LS Boosting 0.288 £ 0.015
. . , . . : . Structured LS Boosting 0.250 4+ 0.017
e Aims to tighten the upper bound (x) by: e Train/test ratio used is the same as in [3] Convex Network Tasso 0363 20013
1) minimizing the empirical risk Remp<ha D) Non-convex Network Lasso 0.380 + 0.017
2) utilizing distance correlation [3,4] to make the loss w.r.t. to given data as independent as possi- Task: predict the housing prices GLACER 0.225 £+ 0.005

ble of the data themselves and thus to indirectly control the mutual stability term Testing MSE, averaged over 10 random splits.

Medicare Readmissions

Note: RObj(h, D) is defined for a hypothesis & selected by any supervised learning algorithm £ Model MSE
= In this study, this objective is utilized in a structured regression setting. e Nodes: 1000 hospital records referring to Linear Reg. 1755.708 + 616.119
hospitals with more than ~150 readmissions _>tructured Linear Reg. 923.551 & 196.065
Neural Network 2037.421 £+ 1199.805
Structured Neural Network 1618.547 4+ 1192.462
MethOdOlOgy e Features: # of discharges, excess readmission Support Vector Reg. 1359.342 + 697.910
. . - - P Structured Support Vector Reg.  504.076 £ 221.228
Structured Regression by Gaussian CRFs ratio, estimated/expected readmission rates  —c e 741,524 = 101,065
A Gaussian CRF (GCRF) models the conditional distribution: Structured Subbagging 234.505 £ 74.378
\ e Structure: similarities between hospital Random Forest 508.294 + 110.983
1 5 9 readmissions Structured Random Forest 24°7.406 4 35.814
Ply|X)=—exp{ —a ¥ (yi— ()" — B> Sij (yi —yj)” ¢ LS Boosting 595.289 T 136.174
Z : i~] Structured LS Boosting 182.006 &= 24.919
’ e Period: 36 months (July 2012 — June 2015) (Non-)convex Network Lasso 5012.614 4+ 768.945
Proposed Model GLACER 73.183 £ 9.032
Generallization-Aware Collaborative Ensemble Regressor (GLACER) . . o
Task: predict the number of hospital readmissions Testing MSE, averaged over 10 random splits.
Input:
Training set D D . .
Similarity matrix S l GLACEKR - Discussion:
# of components M/ e Outperforms alternatives by ~10-56% and more than 49% when predicting housing prices and
Sub-sampling fraction : P J P e &P
prne ' [ subsampling ] hospital readmissions, respectively.
e Achieves statistically significant improvements =- p-values are smaller than 0.01 for Sacramento,
Sample D and S (omitted for brevity) M times and 0.021 for Medicare.
without replacement using the sub-sampling fraction 1 D? D3 eee pM-t  pM e Manifests stable predictions = tight confidence interval for its average MSE.
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Train a single GCRF component F;,, (on top of a least-
squares booster) on each D" and its corresponding S
o=

N62909-16-1-2222.

- determine the worst-fit example for each component

- exchange the worst-fit examples between the pair of
GCREFs that fosters the highest decrease in R;;(P, D) E
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