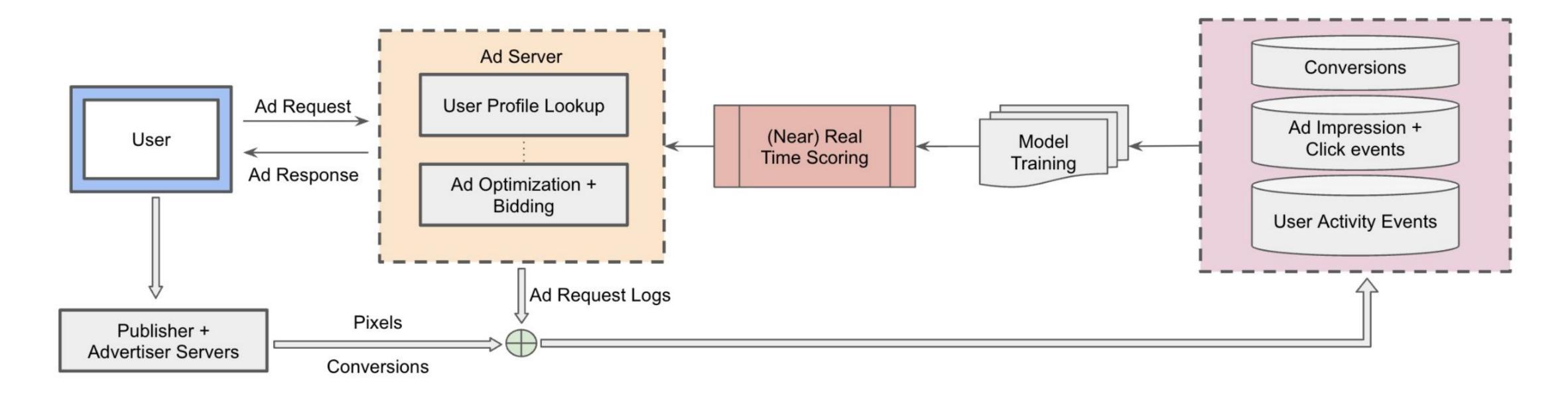
Extreme Multi-Label Classification for Ad Targeting using Factorization Machines

Martin Pavlovski¹, Srinath Ravindran¹, Djordje Gligorijevic^{2,*}, Shubham Agrawal¹, Ivan Stojkovic¹, Nelson Segura-Nunez¹, Jelena Gligorijevic¹ ¹ Yahoo Research, Yahoo Inc. ² eBay

* This work was done when the author was at Yahoo.

Challenges

Assigning users to a large number of targeting segments

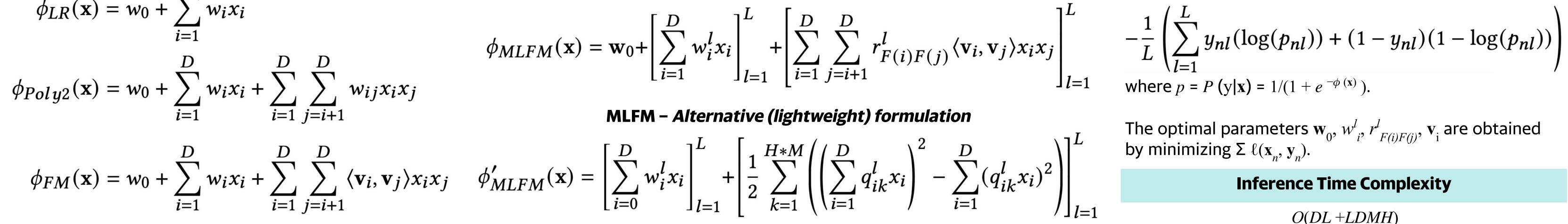

An extreme multi-label classification (XMLC) problem

Contributions

- Generalization of FM models to XMLC problems (MLFM)
- A lightweight formulation of MLFM (*asymptotically* linear time)
- Extensive experiments
 - Comparison to several OVA and XMLC baselines
 - Evaluation on both benchmark and proprietary datasets
 - Demonstration of computational efficiency
- Application to ad targeting involving a large number of segments

• Handling Large number of labels (segments)

- Prediction latency / SLA requirements
- (Near) Real-Time prediction
- Handling relationship among features/labels



Problem Formulation

Given: A dataset containing (\mathbf{x}, \mathbf{y}) pairs, where \mathbf{x} has with D features and \hat{D} fields (depending on the application) such that only one feature value x_i can be active per field F(i)and a feature f_i belongs to one and only one field F(i). $\mathbf{y} \in \{0, 1\}^L$ denotes the labels; multiple labels can be active for \mathbf{x} .

> Objective Learn a function $\phi : \mathbb{R}^D \to \mathbb{R}^L$ that maps an example x to a probability vector $[P(y_1|\mathbf{x}), \dots, P(y_r|\mathbf{x})]$.

Related Approaches	Multi-Label Factorization Machine (MLFM)	Parameter Learning
(-1) $\sum_{n=1}^{D}$	MLFM – Original formulation	CCE loss $\ell(\mathbf{x}_n, \mathbf{y}_n)$ for the <i>n</i> -th data point:

M: feature embedding dimension and *H*: field embedding dimension

The optimal parameters \mathbf{w}_{0} , w_{i}^{l} , $r_{F(i)F(j)}^{l}$, \mathbf{v}_{i} are obtained by minimizing $\Sigma \ell(\mathbf{x}_n, \mathbf{y}_n)$. **Inference Time Complexity** O(DL + LDMH)

*For sparse multi-field categorical data (where $\hat{D} \ll D$) $O(\hat{D}L + L\hat{D}MH) \approx O(L\hat{D}MH)$

Experiments

	MediaMill			RCV1				EURLex				
Model	AUC		Inference time		AUC		Inference time		AUC		Inference time	
	Macro	Stratified	CPU	GPU	Macro	Stratified	CPU	GPU	Macro	Stratified	CPU	GPU
OVA-LR	0.6582	0.6689	0.0110	0.0053	0.6197	0.9466	0.2612	0.0104	0.7900	0.9168	6.6999	0.0133
OVA-SVM	0.5090	0.4944	0.0834	_	0.7697	0.7490	5.3943	_	0.7723	0.7474	67.2408	—
OVA-MLP	0.6141	0.7130	0.0443	0.0085	0.9020	0.9618	0.3896	0.0176	0.8967	0.9703	6.7850	0.0237
FastXML	0.6789	0.7946	0.1071	_	0.6906	0.9485	0.2992	_	0.8359	0.9448	0.9486	_
PfastreXML	0.8354	0.8081	0.4330	_	0.9354	0.9873	1.8260	_	0.9282	0.9734	2.8259	—
Parabel	0.7963	0.8024	0.0536	_	0.8439	0.9623	0.7467	_	0.8687	0.9558	2.3686	_
MLFM	0.8456	0.8248	0.0200	0.0113	0.9179	0.9808	0.3955	0.0192	0.9613	0.9847	7.9049	0.0298

Model	Macro Test AUC	Strat. Test AUC	Model Parameters	Dimension	s Example Size		
OVA-LR	0.7928	0.7477	OVA-LR Feature weights & Bias terms	$(D+1) \times L$	200K × 1098 ~ 3.9 GB	Model	Inference time (ms)
OVA-SVM	0.7707	0.7020	Feature weights	$D \times L$	200K × 1098 3.9 GB	OVA-LR	0.067447
FastXML	0.8011	0.7528	Bias terms	$1 \times L$	1×1098 20.4 KB	MLFM (original)	0.159827
PfastreXML	0.8065	0.7804	MLFM Feature embedding	s $D \times M$	200K × 10 48.7 MB	MLFM (lightweight)	0.101286
Parabel	0.8239	0.7892	Interaction weights		324 × 1098 6.3 MB		
MLFM	0.8421	0.8006	Grand total		~4.00 GB		

