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Abstract. Anomaly detection has been a lasting yet active research area
for decades. However, the existing methods are generally biased towards
capturing the regularities of high-density normal instances with insuffi-
cient learning of peripheral instances. This may cause a failure in finding
a representative description of the normal class, leading to high false pos-
itives. Thus, we introduce a novel anomaly detection model that utilizes
a small number of labeled anomalies to guide the adversarial training. In
particular, a weighted generative model is applied to generate peripheral
normal instances as supplements to better learn the characteristics of the
normal class, while reducing false positives. Additionally, with the help of
generated peripheral instances and labeled anomalies, an anomaly score
learner simultaneously learns (1) latent representations of instances and
(2) anomaly scores, in an end-to-end manner. The experimental results
show that our model outperforms the state-of-the-art anomaly detec-
tion methods on four publicly available datasets, achieving improvements
of 6.15%-44.35% in AUPRC and 2.27%-22.3% in AUROC, on average.
Furthermore, we applied the proposed model to a real merchant fraud
detection application, which further demonstrates its effectiveness in a
real-world setting.

1 Introduction

Anomaly detection, referred to as the process of identifying unexpected pat-
terns from the normal behavior in a dataset, can provide critical help in various
applications, such as fraud detection in finance [9], network attack detection in
cybersecurity [36] and disease detection in healthcare [27]. A plethora of anomaly
detection methods has been introduced over the years. However, such methods
mainly focus on improving the accuracy of detecting anomalies with insufficient
attention to high false positives. In real applications, when a great number of
normal instances are incorrectly reported as anomalies, this may lead to a waste
of labor and material resources.
⋆ Corresponding author
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Fig. 1. (a) Synthetic data composed of normal data (colored in orange) as well as
anomalies (colored in blue). (b) and (c) show the instances (colored in green) generated
by a conventional generative model (WGAN-GP) and our model, respectively. (d), (e)
and (f) show the performance of anomaly detection by two recent anomaly detection
models, GANomaly and DevNet, and our model PIA-WAL. The false positives and
false negatives are colored in red and black, respectively.

Let us take a merchant fraud detection problem as an example. When certain
merchants are considered to be involved in fraudulent activities, a subsequent
on-the-spot investigation needs to be conducted to verify whether the merchants
were indeed involved in fraudulent events. Suppose that a model outputs a huge
amount of potential fraudulent merchants (e.g., > 15, 000 normal merchants
were predicted as anomalies (see Table 3)), enormous resources are required for
investigation and verification, in order to maintain a fair and secure financial en-
vironment. Consequently, reducing the number of false positives while enhancing
anomaly detection accuracy is a rather challenging task.

In the last decade, research efforts have been focused on unsupervised anomaly
detection methods [15, 19]. However, such methods typically produce a large
amount of false positives due to lack of labeled data. Considering that sufficient
amounts of labeled normal instances can be easily collected, many deep learning
approaches were proposed to capture the regularities of normal instances [6].
For instance, GAN-based methods [31, 23] aim to learn a latent feature space
to capture the normality underlying the given data. On the other hand, a few
labeled anomalous data with valuable prior knowledge are available in many real-
world applications. Approaches such as DevNet [22] utilize labeled anomalies to
guarantee a margin between anomalies and normal instances so as to improve
detection accuracy. However, these methods may learn suboptimal representa-
tions of normal instances as they fail to capture the characteristics of peripheral
normal instances, thus leading to high false positives.
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To illustrate the aforementioned issue, we present an example in Fig. 1.
Fig. 1(a) displays a 2-dimensional synthetic dataset, where the orange dots repre-
sent the normal instances and the blue dots represent anomalies. The green dots
in Fig.1(b) represent the instances generated by a conventional generative model
(WGAN-GP [13]). Evidently, most generated instances are mainly concentrated
in the center, which implies that the generative model is biased towards learning
features of high-density instances, while overlooking peripheral instances that
account for a small portion of the normal class. A mass of methods [20, 22, 24]
suffer from the same problem, which leads to a high number of false positives.
An illustrated explanation is presented in Fig. 1(d) and 1(e), which show the
prediction results of two recent anomaly detection methods, GANomaly [1] and
DevNet [22], respectively. It is obvious that a large amount of peripheral nor-
mal instances were incorrectly reported as anomalies (colored in red) by both
methods. In addition, compared to Fig. 1(e), more anomalies were incorrectly
predicted as normal instances (colored in black) in Fig. 1(d) as GANomaly does
not take labeled anomalies into account.

In this work, we develop a weighted generative model by leveraging a few
labeled anomalies for anomaly detection, named PIA-WAL (Peripheral Instance
Augmentation with Weighted Adversarial Learning). The goal of our model is
to learn representative descriptions of normal instances in order to reduce the
amount of false positives while maintaining accurate anomaly detection. The
model consists of two modules, an anomaly score learner and a weighted gen-
erative model. The anomaly score learner utilizes a small number of labeled
anomalies to distinguish anomalies from normal instances. The scores outputted
by the anomaly score learner are expected to reflect the difficulty of instances to
be correctly classified. Since the peripheral normal instances constitute a small
portion of the data, they are generally challenging to capture and are hard to
be correctly predicted. To address this issue, we introduce a weighted generative
model guided by the outputs of the anomaly score learner to generate additional
peripheral normal instances as supplements (see the green dots in Fig.1(c)), in
order to assist the anomaly score learner to better find a representative descrip-
tion of the normal class. Fig. 1(f) clearly shows that our model is able to produce
a high detection accuracy as well as low false positives.

The advantages of the proposed model are threefold. First, by generating
peripheral normal instances as supplements, PIA-WAL is able to capture the
complex feature space of normal instances while reducing false positives. Sec-
ond, PIA-WAL couples the feature representation learning and the anomaly
score optimization in an end-to-end schema. Third, PIA-WAL is consistently
more robust than the other anomaly detection methods under various anomaly
contamination levels.

To verify the effectiveness and robustness of PIA-WAL, we conducted ex-
periments on four publicly available datasets. The results show that PIA-WAL
outperforms seven state-of-the-art methods, achieving statistically significant
improvements of 2.27%-22.3% in AUROC and 6.15%-44.35% in AUPRC, on
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average. Furthermore, we applied PIA-WAL to real-world merchant fraud de-
tection, the results of which further demonstrate its effectiveness.

This work makes the following major contributions:
(1) To the best of our knowledge, this work is the first to integrate a small
amount of labeled anomalies into an adversarial framework to achieve end-to-
end anomaly score learning.
(2) A novel anomaly detection model, namely PIA-WAL, is introduced. With
the help of generating peripheral normal instances, the detector can find a more
representative description of the normal class while accurately detecting anoma-
lies. The code of PIA-WAL will be available online (not posted yet to facilitate
double-blind review).
(3) The results obtained on publicly available datasets and a real-world merchant
fraud dataset demonstrate that PIA-WAL achieves substantial improvements
over state-of-the-art methods.

2 Related Work

Anomaly Detection Anomaly detection is the task of identifying anomalies
that deviate significantly from the majority of data objects [21]. Most conven-
tional approaches are unsupervised including distance-based [4], density-based
[7], isolation-based methods [15], and so forth. However, such methods are often
ineffective in handling high-dimensional or irrelevant features. Recently, deep
learning has been explored to improve anomaly detection [3, 5]. Autoencoder-
based methods [8, 35] utilize a bottleneck network to learn a low-dimensional
representation space and then use the learned representations to define recon-
struction errors as anomaly scores. Anomaly measure-dependent learning meth-
ods [19, 29] aim at learning feature representations that are specifically optimized
for a particular anomaly measure. These deep learning methods can capture
more complex feature interactions compared to the traditional shallow methods,
however, they learn the feature representations separately from the subsequent
anomaly detection, leading to suboptimal detection performance.

The recent advances show that deep anomaly detection can be substantially
improved when labeled anomalies are utilized to guarantee a margin between
the labeled anomalies and normal instances [25]. For example, ADOA [33] tries
to cluster the observed anomalies into k clusters, and detect potential anomalies
and reliable normal instances from unlabeled instances. DevNet [22] leverages
a few labeled anomalies and a Gaussian prior over anomaly scores by defining
a deviation loss to perform end-to-end anomaly detection. Deep SAD [24] en-
forces a margin between the one-class center and the labeled anomalies while
minimizing the center-oriented hypersphere. With the help of prior knowledge
of anomalies, these models can achieve better detection performance. However,
due to the peripheral normal instances constituting a small portion of the train-
ing set, these models may fail to capture the characteristics of such instances.
This makes it difficult to find a representative description of the normal class,
leading to a large number of false positives.
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GAN-based Anomaly Detection Generative Adversarial Networks (GANs)
[12] and the adversarial training framework have been successfully applied to
model complex and high-dimensional distributions of real-world data. This GANs’
characteristic suggests they can be used for anomaly detection, although their
applications have been only recently explored [10, 23]. Anomaly detection using
GANs is the task of modeling the normal behavior using the adversarial training
process and detecting anomalies by defining some form of a residual between a
real instance and a generated instance as an anomaly score. One of the earliest
methods is AnoGAN [26] which involves training a standard GAN on normal
instances only to enforce the generator to learn the manifold of normal instances.
Since the latent space can capture the underlying distribution of normal data,
anomalies are expected to be less likely to have highly similar generated coun-
terparts compared to normal instances. One major issue with AnoGAN is the
computational inefficiency in the iterative search for the most similar generated
instance to the input instances. The model EGBAD [31] and its variant [32] were
designed to address this problem by learning the inverse mapping of raw data
from the latent space. GANomaly [1] further improves the generator over the pre-
vious work by replacing the generator network with an encoder-decoder-encoder
network and adding two additional loss functions. Different from the aforemen-
tioned methods, OCAN [34] and Fence GAN [18] generate fringe instances that
are complementary, rather than matching, to the normal data which are used as
reference anomalies. However, it cannot guarantee that the generated reference
instances well resemble the unknown anomalies. Unlike OCAN, our model gen-
erates instances that are close to hard-to-classify normal instances and thus act
as normal class supplements.

3 Preliminary: Wasserstein GAN with Gradient Penalty
(WGAN-GP)

Generative adversarial networks (GANs) constitute a powerful class of generative
models involving an adversarial process in which two modules, a generator G
and a discriminator D, are trained simultaneously. The generator G models
high dimensional data from a prior noise distribution Pz to learn the real data
distribution Pr, while the discriminator D is a binary classifier that estimates
the probability that a instance is from the real data x rather than the generated
fake data G(z). The objective function of a GAN is : min

G
max
D

Ex∼Pr [logD(x)]+

Ez∼Pz
[log(1−D(G(z)))].

However, the Jensen-Shannon divergence that GANs aim to minimize is po-
tentially not continuous with respect to the generator’s parameters, leading to
training difficulties. To solve this problem, [2] propose using the Earth-Mover
distance instead in the loss function of the original GAN, thus resulting in the so-
called Wasserstein GAN (WGAN) that improves training stability. Under mild
assumptions, the Earth-Mover distance is continuous everywhere and differen-
tiable almost everywhere. Thus, WGAN’s objective function is constructed using
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the Kantorovich-Rubinstein duality[28]:

min
G

max
D∈D

E
x∼Pr

[D(x)]− E
z∼Pz

[D(G(z))] , (1)

where D is the set of 1-Lipschitz functions and minimizing Eq. (1) with respect
to the generator parameters essentially minimizes the Earth-Mover distance be-
tween the two distributions. To enforce the Lipschitz constraint on the discrim-
inator, WGAN simply clips the weights of the critic (that is, a discriminator
variant) to lie within a compact space [−c, c].

However, WGAN’s weight clipping always results in either vanishing or ex-
ploding gradients without careful tuning of the clipping threshold c. Consider-
ing these issues, WGAN-GP [13] is proposed by introducing gradient penalty
to enforce the Lipschitz constraint. The objective function is defined with an
additional term forcing the gradient to be smaller than 1:

LDisc = E
z∼Pz

[D(G(z))]− E
x∼Pr

[D(x)] + λ E
x̂∼Px̂

[
(∥∇x̂D(x̂)∥2 − 1)2

]
(2)

LGen = − E
z∼Pz

[D(G(z))] , (3)

where λ is the penalty coefficient and Px̂ is a uniform sampling distribution along
straight lines between pairs of points sampled from the original data distribution
and the generated data distribution.

4 Method

4.1 Problem Statement

Assume a dataset of m training instances X = {x1, x2, ..., xl, xl+1, ..., xm} with
xi ∈ RD, where XA = {x1, x2, ..., xl} is a very small set of labeled anomalies
and XN = {xl+1, xl+2, ..., xm} is a set of normal instances, |XA| ≪ |XN |. The
goal is to identify whether an instance is anomalous or not.

4.2 Proposed Framework

In this section, we present the details of the proposed model, PIA-WAL. As
shown in Fig. 2, the model consists of two major modules, an anomaly score
learner and a weighted generative model. The anomaly score learner, trained on
real (and generated) normal instances and a small amount of labeled anoma-
lies, aims to distinguish anomalies from normal instances. A weighted generative
model is introduced to assist the anomaly score learner by generating supple-
mental instances that are close to the peripheral normal instances. With the
inclusion of the generated instances, the anomaly score learner is capable to
better differentiate between peripheral normal instances and anomalies.
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Fig. 2. The framework of PIA-WAL.

Anomaly Score Learner Inspired by the DevNet model [22] suggesting that
a small number of labeled anomalies can be leveraged into the mechanism of
anomaly scoring, the anomaly score learner in our model draws on a similar
idea. Specifically, the learner yields an anomaly score for every given input, and
defines a reference score for guiding the subsequent anomaly score learning. The
scores of anomalies are enforced to significantly deviate from those of normal
instances and lie in the upper tail of the score distribution. Considering that the
Gaussian distribution fits the anomaly scores quite well in a variety of datasets
[14], we simply use the standard Gaussian distribution as a prior S ∼ N(0, 1)
and set the reference score to 0. The loss function of the anomaly score learner
is designed as follows:

ℓ = E
x∈XN

[|φ(x)|] + E
x∈XA

[max(0, α− φ(x))] , (4)

where φ(·) is the output of the anomaly scoring network. The loss in Eq. (4)
aims to push the scores of normal instances as close as possible to 0, while
enforcing the scores of anomalies to deviate from 0 (that is the mean of the
normal instances’ scores) at least by α. Note that if an anomaly has a negative
anomaly score, the loss will be particularly large. Minimizing the loss encourages
large positive deviations for all anomalies. Therefore, the learner can enforce the
scores of anomalies to significantly deviate from those of normal instances and
to lie in the upper tail of the score distribution. To some degree, the scores of
normal instances implicitly indicate the difficulty of the instances to be correctly
classified. A normal instance with a high anomaly score indicates that it may be a
peripheral normal instance that is hard to be detected by the learner. In addition,
there is another reasonable possibility that it may be a noisy instance. Thus, we
utilize the anomaly scores for guiding the learning process of the subsequent
generative model.

Weighted Generative Model As previously discussed, most anomaly detec-
tion methods do not focus on learning peripheral normal instances due to their
complexity and small proportion, which leads to an increase in false positives.
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Thus, we propose a weighted generative model to generate instances that are
close to peripheral normal instances, and thus serve as normal class supplements,
to improve the anomaly detection accuracy and reduce false positives. In order
to achieve guided instance generation, we utilize the outputs of the anomaly
score learner to calculate the degree to which a normal instance is peripheral,
denoted by wperh. The weight wperh of an observed normal instance x ∈ XN is
defined as:

wperh(x) = |φ(x)| ∗ I[|φ(x)| < α], (5)

where I is an indicator function and |φ(x)| is the absolute value of an observed
normal instance’s anomaly score. The more difficult it is for the anomaly score
learner to distinguish a normal instance x from the anomalies, the higher the
value of φ(x) is. Considering that the normal class may contain some anomaly
contamination in real-world applications, we use an indicator function to guide
the model to not be affected by noise during the learning process. When |φ(x)|
of an observed normal instance exceeds α (the threshold, same used in Eq. (4)),
it indicates that the instance is probably a noisy instance in the proximity of
anomalies. The value of wperh(x) is then set to 0, thus not affecting the learning
of the generative model.

As mentioned in Section 3, the objective of conventional generative models
is to minimize the distance between the fake and real data distributions. To
make the peripheral normal instances play a more important role in guiding
the generator learning, we incorporate the weight wperh into the discriminator
loss. We utilize the WGAN-GP model as our basic generative model, due to its
excellent data generation capability and stable training. The discriminator loss
of WGAN-GP, weighted by wperh, is:

LDisc = E
z∼Pz,x∼Pr

[
wperh(x) ∗ (D(G(z))−D(x))

]
+

λ E
x̂∼Px̂

[
wperh(x) ∗ (∥∇x̂D(x̂)∥2 − 1)2

]
= E

z∼Pz

[
wperh(x) ∗D(G(z))

]
− E

x∼Pr

[
wperh(x) ∗D(x)

]
+λ E

x̂∼Px̂

[
wperh(x) ∗ (∥∇x̂D(x̂)∥2 − 1)2

]
.

(6)

Balanced Sampling The real peripheral normal instances may account for an
extremely small portion of a mini-batch, thus the role of wperh will be weakened
in Eq. (6). To this end, we ensure that the distribution of wperh within a batch is
uniform by employing a sampling procedure. We first calculate the wperh of a real
normal instance x and scale it within the [0, 1] range by tanh(·) for convenient
comparison. We then sample ξ uniformly from [0, 1]. If tanh(wperh(x)) is higher
than ξ, the normal instance x is selected and included into the mini-batch. This
step is repeated until the mini-batch is full. The instance selection for the next
batch continues from the position of the last selected normal instance. Since
ξ is uniformly sampled from [0, 1], the distribution of the wperh weights of the
selected normal instances is correspondingly uniform. The normal instances with
high wperh weights can indeed play an important role in the generator learning.
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Generator’s Quality The generated instances are used as supplementary
training instances to assist the anomaly score learner to better capture the fea-
ture information of the peripheral instances. However, the generated low-quality
instances may mislead the anomaly score learner. Therefore, when updating the
anomaly score learner’s parameters using the generated instances, the quality of
the generated instances should be taken into account. In fact, the generated in-
stance’s quality is closely related to the generator’s quality. Fortunately, because
the WGAN model updates the discriminator multiple times before each genera-
tor update, it has been shown that the loss function at this point correlates well
with the instances’ quality [2]. A lower discriminator loss value implies that a
generator is capable of generating instances of better quality. The generator’s
quality is computed as:

Qgen = e−|LDisc|. (7)

The weights of the generated instances are set to Qgen. With the inclusion of
generated instances as normal class supplements in the training set, the learner’s
loss function is modified as follows:

Lscore = E
x∈XN

[|φ(x)|] + E
x∈XA

[max(0, α− φ(x))] +Qgen ∗ E
x∈G(z)

[|φ(x)|] . (8)

4.3 Outline of PIA-WAL

In summary, the overall objective function of PIA-WAL can be written as follows:

PIA-WAL’s anomaly score learner : min Lscore. (9)

PIA-WAL’s weighted generative model : min
G

LGen, max
D

−LDisc.

The training procedure of PIA-WAL is outlined in Algorithm 1. Given a train-
ing dataset, in the first iteration, mini-batches are used to update the parameters
of the anomaly score learner so as to minimize ℓ in Eq. (4) (Lines 4-8). Note
that each mini-batch is constructed by sampling the same number of abnormal
and normal instances. Then in the subsequent iterations, the weighted genera-
tive model (Lines 10-14) and anomaly score learner (Lines 15-20) are trained in
turns. The outputs of the anomaly score learner trained in the previous iteration
are used to calculate the degree to which the instances are peripheral (Line 12),
thus assisting the weighted generative model learning. The instances generated
by the latest updated generative model act as supplementary training instances
to further optimize the learner with the corresponding generator’s quality (Line
15). By jointly updating the two modules alternately, a trained anomaly score
learner is obtained.

During the testing stage, the optimized anomaly score learner is used to
produce an anomaly score for every test instance. Here, a reasonable threshold
should be selected to determine whether an instance is normal or not. Due
to the standard Gaussian prior assumption of the anomaly scores, we use the
scores’ quantiles to determine a threshold with a desired confidence level[22]. By
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Algorithm 1 PIA-WAL’s Training Procedure

Input: Dataset X = XA ∪XN , margin parameter α, penalty coefficient λ, batch size
t, number of training epochs for anomaly score learner Epochlearner and generative
model Epochgen

Output: A trained anomaly score learner and a weighted generative
model

1: Randomly initialize the parameters of the learner and weighted generative model
2: n batches = (int)(m/t)
3: for i=1 to Epochlearner do
4: if i==1 then
5: for j=1 to n batches do
6: Construct a mini-batch by randomly sampling t instances from XA and

XN , separately
7: Update the parameters of the anomaly score learner using Eq. (4)
8: end for
9: else
10: for j=1 to Epochgen do
11: Sample a balanced mini-batch from XN

12: Compute wperh for each instance in mini-batch using Eq. (5)
13: Optimize the discriminator D and generator G using Eq. (6) and Eq. (3),

respectively
14: end for
15: Calculate generator’s quality Qgen using Eq. (7)
16: for j=1 to n batches do
17: Use the latest updated generator G to generate t supplementary instances
18: Construct a batch with t generated instances, t observed normal instances

and t anomalies
19: Optimize the anomaly score learner using Eq. (8)
20: end for
21: end if
22: end for

applying a confidence level of 99.9%, an instance with an anomaly score of over
3.09 (z0.999 = 3.09) is considered an anomaly, meaning that the probability of an
instance being normal is 0.001. Thus, we can set an appropriate and interpretable
threshold to identify anomalies with a high confidence level.

5 Experiments

5.1 Datasets and Baselines

In order to verify the effectiveness of PIA-WAL, we conducted experiments on
four widely-used real-word datasets. The NB-15 dataset [17] is a network in-
trusion dataset containing 107,687 data instances, each being 196-dimensional,
in which various types of network attacks are treated as anomalies (21.5%).
The Census data [11] extracted from the US Census Bureau database contains



Peripheral Instance Augmentation with Weighted Adversarial Learning 11

299,285 instances in a 500-dimensional space. The task is to detect the rare high-
income individuals, which constitute about 6% of the data. The Celeba dataset
[16] contains 201,690 celebrity images in a 39-dimensional space in which the
scarce bald celebrities (less than 3%) are treated as anomalies. The Fraud data
[9] contains 284,807 credit card transactions in a 29-dimensional space. The
task is to detect fraudulent transactions, accounting for 0.17%. We split each
dataset into training and test sets with a ratio of 8:2. Since only a small number
of labeled anomalies are available in many applications, the number of labeled
anomalies used for training was fixed to 70 across all datasets in accordance with
the setting in [20].

PIA-WAL is compared against 7 state-of-the-art methods. The first three are
GAN-based methods, the fourth is a classical unsupervised approach, while the
other three leverage labeled anomalies:

– ALAD [32] builds upon bi-directional GANs and uses reconstruction errors
to determine if instances are anomalous.

– GANomaly [1] employs an adversarial autoencoder within an encoder-
decoder-encoder pipeline to capture the distribution of training instances
in the original and latent spaces.

– OCAN [34] leverages the idea of complementary GANs to generate fringe
instances used as reference anomalies and train a one-class discriminator
when only normal instances are observed.

– iForest [15] is a widely-used unsupervised method that detects anomalies
based on the number of steps required to isolate instances by isolation trees.

– ADOA [33] follows a two-stage procedure. First, the observed anomalies
are clustered while the unlabeled instances are categorized into potential
anomalies and reliable normal instances. Then, a weighted classifier is trained
for further detection.

– DevNet [22] is a deep supervised method that leverages a few labeled
anomalies with a Gaussian prior to perform an end-to-end differentiable
learning of anomaly scores.

– Deep SAD [24] minimizes the distance of normal instances to the one-class
center while maximizing the distance of known anomalies to the center.

Experimental Setting The hyperparameters of the baselines were set to the
same values as the ones used in their respective papers. The anomaly score
learner used in DevNet was also leveraged in our model and run with one hidden
layer of 20 units and a ReLU activation. We optimized the model parameters
using RMSprop with a learning rate of 0.0001, batch size t = 128, Epochlearner =
30 and Epochgen = 1000. We set the margin α = 5 to achieve a very high
significance level for all labeled anomalies. The penalty coefficient λ was set
to 10 and PIA-WAL’s parameters were initialized randomly. All models were
implemented in Keras 2.2.4 and ran on a machine with 32GB of memory, 6 CPU
cores and 1 quadro p400 GPU.

Two widely-used complementary performance metrics, Area Under the Re-
ceiver Operating Characteristic Curve (AUROC) and Area Under the Precision-
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Table 1. AUROC and AUPRC performance (with ± standard deviation) of PIA-WAL
and the baselines.

Models
AUPRC AUROC

NB-15 Census Celeba Fraud Average P-value NB-15 Census Celeba Fraud Average P-value

ALAD 70.3±4.0 10.3±1.0 6.8±0.8 44.1±2.7 32.88 <0.0001 87.5±0.7 70.1±2.8 76.9±3.6 95.9±0.5 82.60 <0.0001
GANomaly 73.7±1.6 10.3±2.0 8.3±2.4 42.7±7.8 33.75 <0.0001 86.2±0.9 72.2±3.2 79.0±5.6 94.4±2.1 82.95 <0.0001
OCAN 43.3±3.8 8.3±5.1 4.0±1.2 39.4±8.8 23.75 <0.0001 77.5±1.8 62.3±3.0 62.3±8.2 94.7±1.0 74.20 <0.0001

IForest 24.4±1.7 7.2±0.3 6.4±1.6 16.9±4.8 13.73 <0.0001 57.8±2.3 60.1±2.1 70.7±0.9 95.4±0.3 71.00 <0.0001
ADOA 40.2±3.1 23.9±3.5 29.8±1.0 38.0±0.5 32.98 <0.0001 77.8±2.7 84.5±1.4 90.4±0.4 95.9±0.2 87.15 <0.0001
DevNet 81.0±1.6 36.4±0.9 23.6±1.4 62.8±1.0 50.95 0.0001 92.6±0.3 81.2±2.8 94.5±0.2 95.8±1.3 91.03 <0.0001

Deep SAD 88.8±0.2 24.2±6.4 22.6±2.4 72.1±1.5 51.93 0.006 95.7±0.1 73.2±9.2 92.5±1.4 95.4±1.3 89.20 0.0001

PIA-WAL 88.8±0.7 41.5±1.2 30.9±1.6 71.1±0.6 58.08 - 95.1±0.2 85.3±1.1 95.5±0.8 97.3±0.7 93.30 -

Recall Curve (AUPRC), were used. The paired Wilcoxon signed rank test [30]
was used to examine the significance of the performance of PIA-WAL against
the seven baselines. All reported results were averaged over 10 independent runs.

5.2 Results and Discussion

Effectiveness on Real-world Datasets Table 1 shows the performances of
PIA-WAL and all baselines on the four datasets in terms of AUROC and AUPRC.
It is evident that PIA-WAL obtains substantial improvements over the alterna-
tive methods. Particularly, across all datasets, PIA-WAl obtains 27.95% higher
average AUPRC than GAN-based methods (ALAD, GANomaly and OCAN),
44.35% higher average AUPRC than the unsupervised method (iForest) and
12.79% higher average AUPRC than supervised methods (ADOA, DevNet and
Deep SAD). In terms of AUROC, PIA-WAL produces 13.38% and 22.3% higher
average AUROC compared to classic GAN-based methods and iForest, respec-
tively. In addition, PIA-WAL also outperforms the supervised methods, namely,
DevNet by 2.27% and ADOA by 6.15%. Compared with Deep SAD, PIA-WAL
obtains comparable AUPRC on the NB-15 dataset, yet achieves obvious im-
provements on Census and Celeba and produces a higher AUROC on the Fraud
dataset. The improvements are all statistically significant at a 99% confidence
level. The reason lies in PIA-WAL’s ability to efficiently leverage a limited
amount of available anomalies as prior knowledge to enhance the ability of distin-
guishing anomalies from normal instances. Meanwhile, with the help of generated
peripheral normal instances, the model can further reduce the number of false
positives.
Robustness under Anomaly Contamination To investigate the robustness
of PIA-WAL, we polluted the normal training instances from the NB-15 dataset
with contamination levels ranging from 0% up to 20%. The results in terms
of AUPRC and AUROC are presented in Fig. 3. The detection performance
of all methods decreases with increased contamination levels, particularly for
the methods trained using only normal instances (e.g., GANomaly and ALAD).
Nevertheless, it is obvious that PIA-WAL consistently outperforms its alterna-
tives across different contamination levels. Moreover, as the contamination level
increases, the decline rate of PIA-WAL’s performance is much lower than that of
Deep SAD; even though they perform comparably when the data is pure. This
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Fig. 3. AUPRC (left) and AUROC (right) under different contamination levels on the
NB-15 dataset.

Fig. 4. AUPRC w.r.t the amount of labeled anomalies on the Celeba dataset.

suggests that PIA-WAL has a substantial capability of distinguishing anomalies
from normal instances in challenging noisy environments.

Effectiveness w.r.t. the Amount of Labeled Anomalies To account for
the difficulty of obtaining labeled anomalies in most applications, we vary the
number of labeled anomalies from 35 to 140 and examine the effectiveness of PIA-
WAL. Considering that (1) classical GAN-based anomaly detection methods are
trained only on normal instances and (2) iForest is an unsupervised method,
their performance is invariant to the amount of labeled anomalies. Fig. 4 shows
the AUPRCs obtained by the other four methods w.r.t. different numbers of
available labeled anomalies on the Celeba dataset. The performance of these
methods generally increases with the increased number of labeled anomalies. As
the amount of labeled anomalies increases, it is obvious that PIA-WAL consis-
tently outperforms the alternative models. It should be emphasized that, even
when using only 35 labeled anomalies, PIA-WAL still achieves the best perfor-
mance.

Ablation Study To study the impact of Qgen (the weights of the generated
instances in Eq. (8)) and wperh (the weights of normal instances in Eq. (6)), we
further conducted an ablation study of PIA-WAL on the NB-15 dataset, and
reported the results in Table 2. When we disable Qgen in PIA-WAL, there is
a drop in performance, as expected, since the anomaly score learner is most
probably misled by the generated low-quality instances. When we remove wperh,
the generator works similarly to a conventional generative model, rather than



14 W. Zong et al.

Table 2. Model ablation study results on the NB-15 dataset.

Model AUPRC AUROC

PIA-WAL 88.8 95.1
PIA-WAL−Qgen 87.7 94.4
PIA-WAL−wperh 81.1 94.1

Table 3. Merchant fraud detection performance obtained by the baselines and PIA-
WAL.

Model TN FP FN TP AUPRC

OCAN 127,151±13,249 33,544±13,249 6±5 100±5 1.2±0.3
ALAD 128,639±1 32,056±1 1±0 105±0 4.7±0.8

GANomaly 146,171±3,351 14,524±3,351 9±2 97±2 1.1±0.1

ADOA 153,913±2,051 6,782±2,051 17±11 89±11 2.7±1.4
IForest 154,279±343 6,416±343 23±2 83±2 2.0±0.1
DevNet 159,774±152 921±152 18±3 88±3 41.6±2.3

Deep SAD - - - - 54.3±3.2

PIA-WAL 160,215±123 480±116 20±3 86±3 56.6±0.8

generating mainly peripheral instances. The performance decreases by 7.7% in
AUPRC. This suggests that the use of generated peripheral normal instances
can effectively improve the detection accuracy.

6 Application to Merchant Fraud Detection

We applied PIA-WAL to real-world merchant fraud detection. The goal of the
task is to predict whether a merchant is involved in fraudulent activities based on
their daily transactions. We collected 33,744,737 merchants’ transactions made
from April to June of 2020 from a mobile payment platform and extracted 182
daily transaction features for each merchant (e.g., payment volume, transaction
number). Finally, 272,821 normal instances and 205 fraud instances from April
and May were selected for training, while 160,695 normal instances and 106
fraud instances from June were used for testing. Since a subsequent on-the-spot
investigation required for verification is time-consuming and labor-intensive, this
application would require a fraud detection model that is both accurate and
aimed at reducing the number of false positives as much as possible.

Table 3 summarizes the results obtained by the seven baselines and PIA-
WAL. Note that since the proportion of anomalies and normal instances is ex-
tremely unbalanced (1:1516), AUPRC is considered to be more appropriate for
evaluating the performance of the models [22]. Evidently, compared with the
baselines, PIA-WAL achieves a substantial improvement of 2.3%-50% (with a
small standard deviation) in AUPRC, which demonstrates the effectiveness of
PIA-WAL in merchant fraud detection. Moreover, we also calculated threshold-
specific metrics including TN (True Negatives), FN (False Negatives), FP (False
Positives) and TP (True Positives). As Table 3 shows, GAN-based methods
obtain high TPs, but tend to produce massive FPs (from 14,524 to 33,544).
PIA-WAL obtains comparable TP values when compared to iForest, ADOA and
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DevNet. However, iForest and ADOA incur high FPs, 6,416 and 6,782, respec-
tively. DevNet achieves the lowest FPs among the baselines, but the number of
FPs is two times larger than the one obtained by PIA-WAL. Note that Deep
SAD does not provide a comprehensive threshold selection strategy and thus
its threshold-specific metric values are omitted from Table 3. Finally, the pro-
posed PIA-WAL is able to significantly reduce the number of false positives while
maintaining the anomaly detection accuracy in a real-world application.

7 Conclusion

We introduce a novel end-to-end anomaly detection model, PIA-WAL, which
utilizes a few labeled anomalies to guide an adversarial training process. The
main contribution is the generation of peripheral normal instances as supple-
ments, which allows for PIA-WAL to learn a more representative description of
the normal class. PIA-WAL achieves significant lifts over seven state-of-the-art
methods on four public datasets. Even when the anomaly contamination is high
or the number of labeled anomalies is low, PIA-WAL still obtains satisfactory
performance. When applied to a real merchant fraud detection application, PIA-
WAL can indeed reduce the number of false positives and maintain the anomaly
detection accuracy, thus avoiding unnecessary labor and material resources.
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