
GAD: A Generalized Framework for Anomaly Detection at
Different Risk Levels

Rulan Wei∗
Zewei He∗

East China Normal University
Shanghai, China

{rulanwei,zwhe}@stu.ecnu.edu.cn

Martin Pavlovski
Temple University

Philadelphia, PA, United States
martin.pavlovski@temple.edu

Fang Zhou†
East China Normal University

Shanghai, China
fzhou@dase.ecnu.edu.cn

ABSTRACT
Anomaly detection is a crucial data mining problem due to its ex-
tensive range of applications. In real-world scenarios, anomalies
often exhibit different levels of priority. Unfortunately, existing
methods tend to overlook this phenomenon and identify all types
of anomalies into a single class. In this paper, we propose a gener-
alized formulation of the anomaly detection problem, which covers
not only the conventional anomaly detection task, but also the
partial anomaly detection task that is focused on identifying target
anomalies of primary interest while intentionally disregarding non-
target (low-risk) anomalies. One of the challenges in addressing
this problem is the overlap among normal instances and anomalies
of different levels of priority, which may cause high false positive
rates. Additionally, acquiring a sufficient quantity of all types of la-
beled non-target anomalies is not always feasible. For this purpose,
we present a generalized anomaly detection framework flexible in
addressing a broader range of anomaly detection scenarios. Em-
ploying a dual-center mechanism to handle relationships among
normal instances, non-target anomalies, and target anomalies, the
proposed framework significantly reduces the number of false pos-
itives caused by class overlap and tackles the challenge of limited
amount of labeled data. Extensive experiments conducted on two
publicly available datasets from different domains demonstrate the
effectiveness, robustness and superior labeled data utilization of
the proposed framework. When applied to a real-world applica-
tion, it exhibits a lift of at least 7.08% in AUPRC compared to the
alternatives, showcasing its remarkable practicality.
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Table 1: Advantages of the proposed framework GAD vs.
Semi-supervised methods. The symbol "◦" indicates that
some of the methods consider the corresponding factors.

Advantages GAD Semi-super. methods
Capable of conventional anomaly detection ✓ ✓
Accounting for priority among anomalies ✓ −

Significant reduction of FPs due to class overlap ✓ ◦
High utilization of labeled data ✓ ◦

Robust to anomaly contamination ✓ ◦
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1 INTRODUCTION
Anomaly detection is a task that aims at identifying data objects
significantly deviating from the majority of the data [18]. It has
important applications across various domains, such as fraud de-
tection in finance [3, 29], risks management in banking [11], safe-
guarding against network intrusions in cybersecurity [40], disease
detection in healthcare [13, 23], among others. Since obtaining a
sufficient number of accurately labeled instances is challenging
in anomaly detection tasks, unsupervised methods [15, 17, 24, 27]
have dominated this research area for decades [1]. However, in
practical applications, a small number of labeled anomalies is easily
accessible. Hence, numerous semi-supervised anomaly detection
approaches [20, 25, 33, 43] have emerged in recent years, demon-
strating noticeable improvements by leveraging prior knowledge
derived from labeled anomalies.

The existing anomaly detection approaches are designed to ad-
dress the conventional anomaly detection task, which focuses on
the identification of all types of anomalies into a single class. In
other words, these approaches aim to identify anomalies uniformly
while ignoring any priority that may exist among the anomalies.
However, in real-world scenarios, anomalies often exhibit distinct
levels of priority. For instance, in a risk control scenario of an aggre-
gated payment platform where millions of merchants and billions
of transactions are involved every day (particularly on days such
as Black Friday or China’s Double 11), various anomalies with dif-
ferent urgency levels pose complex demands. High-risk anomalies,
exemplified by activities like gambling and money laundering, pose
significant threats, but they occur infrequently—perhaps less than
twenty times per day. In contrast, low-risk anomalies, like cash-out
and fake orders, are comparatively less harmful, but they manifest
in much greater numbers, reaching thousands daily, which is fifty
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times that of the high-risk anomalies. Overseeing all anomaly
risk levels would overly burden security teams and poten-
tially lead to delays in promptly addressing high-risk anom-
alies and cause substantial economic losses. This phenomenon
is also observed in other fields.

In this study, we designate anomalies of interest and of higher
risk as target anomalies, and those of lower interest and lower
risk as non-target anomalies. Given the efficiency constraints of
risk management as well as the scarcity and high cost of human
resources, the precise identification of target anomalies becomes
imperative, while adopting a more permissive stance toward non-
target anomalies is deemed a preferable strategy.

Given the mentioned requirement, prior approaches fail to accu-
rately identify target anomalies. Assuming labels for both target and
non-target anomalies are available, two straightforward solutions
arise: (i) The first solution is to utilize a semi-supervised anomaly
detection method to separate all types of anomalies from normal
instances and subsequently employ a supervised binary classifier
to differentiate target from non-target anomalies. However, this
approach is constrained by the performance of semi-supervised
methods. (ii) The second solution is to apply a supervised three-
class classification approach to distinguish between normal in-
stances, non-target anomalies, and target anomalies. Yet due to
limited amounts of labeled anomaly instances, this strategy often
yields sub-optimal results. However, when labels of non-target
anomalies are not available, it is more challenging for the existing
semi-supervised approaches to accurately identify target anomalies,
as non-target anomalies exhibit different characteristics compared
to normal instances.

Three major challenges hinder the effective addressing of the
aforementioned requirement: (i) Labels for all types of non-target
anomalies are challenging to obtain as they are not of primary
interest and hence are rarely labeled. Some types of non-target
anomalies are “unknown” or even “unseen” in the training dataset.
(ii) Class overlap commonly occurs among target anomalies, non-
target anomalies, and marginal normal instances. Effectively dif-
ferentiating them to minimize the number of false positives is the
key to the precise identification of target anomalies. (iii) Non-target
anomalies may be positioned further away from both target anom-
alies and normal instances, which poses a challenge for the existing
approaches to clearly identify target anomalies.

Thus, we introduce a generalized formulation of the anomaly de-
tection problem and present a framework forGeneralizedAnomaly
Detection (GAD) that covers the aforementioned anomaly detec-
tion scenarios. GAD addresses not only the conventional anomaly
detection1 task but also the partial anomaly detection task that is fo-
cused on identifying target anomalies of interest while intentionally
disregarding low-risk non-target anomalies.

The proposed framework is built upon the idea of Deep SAD [25]
and significantly extends its flexibility and capacity to broader sce-
narios. Deep SAD and other existing methods that only consider the
normal-anomaly relationship fail to account for scenarios where not
all anomalies are of interest; in contrast, our approach introduces a
dual-center mechanism to maximize the difference between target

1For clarification, conventional anomaly detection refers to semi-supervised anomaly
detection, where only labels of all types of anomalies are accessible.

anomalies and both normal and non-target anomalies. To further
reduce the impact of overlap among classes, we also differentiate
target anomalies into hard-to-identify and easy-to-identify sets to
improve the representation learning process in GAD. Note that
GAD does not assume specific positions for target and non-target
anomalies relative to normal instances. Nevertheless, GAD is even
more effective when non-target anomalies are more distinct from
normal instances (see Sections 5.3 and 5.4).

Further, we derive three variants of the GAD framework. The first
two, GAD𝑓 −𝑝𝑎𝑟𝑡𝑖𝑎𝑙 and GAD𝑠−𝑝𝑎𝑟𝑡𝑖𝑎𝑙 , are specialized in addressing
the partial anomaly detection task in fully-supervised and semi-
supervised settings, respectively, while the third variant GAD𝑐𝑜𝑛

is designed for the conventional anomaly detection task.
Experimental results on two publicly available datasets from dif-

ferent domains and a real-world dataset show that (i) GAD𝑓 −𝑝𝑎𝑟𝑡𝑖𝑎𝑙

and GAD𝑠−𝑝𝑎𝑟𝑡𝑖𝑎𝑙 outperform eleven state-of-the-art methods in
partial anomaly detection tasks, achieving an average improvement
of 14.72% and 17.46% in AUPRC, respectively, which suggests a
significant false positive rate reduction. (ii) In the conventional
anomaly detection tasks, GAD𝑐𝑜𝑛 achieves an average AUPRC
improvement of 39.59%. (iii) All GAD variants exhibit superior uti-
lization of labeled data, requiring as little as 1% of labeled anomalies
while achieving comparable performance to the best-performing
method, respectively.

In summary, this paper makes the following major contributions:
• To the best of our knowledge, this work is the first to emphasize
the concept of priority among anomalies and precisely identify
anomalies of primary interest to meet real-world requirements.
• We propose to address a generalized anomaly detection problem
which covers a broader and more practical range of real-world
scenarios. The main novelty of this work is that we propose an
‘umbrella’ (all-encompassing) framework GAD (our code is avail-
able at the repository2) that addresses different AD scenarios.
• The implementations of the GAD framework showcase strong
adaptability across real-world anomaly detection tasks. GAD𝑐𝑜𝑛

precisely identifies all types of anomalies in a conventional set-
ting. When not all anomalies are of interest, GAD𝑓 −𝑝𝑎𝑟𝑡𝑖𝑎𝑙 and
GAD𝑠−𝑝𝑎𝑟𝑡𝑖𝑎𝑙 separate target anomalies from other instances,
corresponding to scenarios with available and unavailable labeled
non-target anomalies, respectively.
• GAD significantly reduces the number of false positives caused
by class overlaps, insufficient and incomplete labeled data, and
positions of non-target anomalies, demonstrating notable detec-
tion performance as well as high utilization of labeled data.

2 RELATEDWORK
Unsupervised Anomaly Detection. Due to the unavailability of
labeled data, most conventional anomaly detection methods are
designed in an unsupervised fashion. Despite their simplicity and
efficiency, classical methods [15, 30] often face challenges in dealing
with high-dimensional data due to the need of feature engineering.
Deep learning-based methods automatically learn feature represen-
tations of high-dimensional data. For example, Deep SVDD [24]
and DeepIF [35] enhance traditional SVDD [30] and iForest [15]
through deep neural networks, enhancing their performance on

2https://github.com/ZhouF-ECNU/GAD
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high-dimensional data. Deep autoencoder based approaches [4, 9,
42] and Generative Adversarial Networks (GAN) [26, 38] enhance
the learning of the underlying distribution of normal instances.
Though recent deep unsupervised methods [14, 22, 36] exhibit pro-
ficiency in handling high-dimensional data, they suffer from limited
inclusion of prior knowledge, leading to high false positive rates.

Semi/Weakly-supervised Anomaly Detection. In practical
applications, a small number of labeled anomalies are usually ac-
cessible. Thus, several semi-supervised approaches have been pro-
posed to leverage labeled anomalies to enhance their performance.
Some of the most well-known approaches include REPEN [17], De-
vNet [20], Deep SAD [25], Elite [39], the kernel-based method [33],
ADMoE [41], and PIA-WAL [43]. The above semi-supervised meth-
ods demonstrate notable improvements in performance by incor-
porating labeled anomalies. The aforementioned semi-supervised
methods treat all anomalies equally and identify all types of anom-
alies into a single class. Consequently, this may result in a high
false positive rate when only a specific subset of anomalies requires
accurate identification.

In recent years, it has been recognized that anomalies can be
of various types, making it impractical to obtain labeled instances
encompassing all anomaly types [8]. Several weakly-supervised
methods [5, 19, 21, 31, 32] have been developed to detect both seen
and unseen anomalies given partially labeled anomaly classes from
different perspectives. These methods excel at exploring all possible
anomalies based on known instances from a subset of classes. In
other words, weakly-supervised methods aim at identifying target
and non-target anomalies uniformly. As non-target anomalies ex-
hibit abnormal characteristics, it is naturally easier to classify them
together with target anomalies. In contrast, it is more challenging
to draw a clear borderline between target anomalies and both non-
target anomalies and normal instances when labels for non-target
anomalies are not accessible. Therefore, weakly-supervised AD
methods are not applicable to identifying target anomalies.

As opposed to the above approaches, our focus lies in propos-
ing a generalized framework that not only enables more precise
identification in the conventional anomaly detection scenarios but
also excels in accurately identifying anomalies of primary interest,
while disregarding those considered not of interest.

Anomaly Diagnosis. Anomaly diagnosis [6, 12, 28, 37], also
known as anomaly interpretation, is focused on pinpointing spe-
cific channels (or variables, or features) that cause abnormalities.
However, since anomaly diagnosis takes failures or anomalies as
inputs and is a subsequent task to anomaly detection, it is beyond
the scope of this work.

3 PROBLEM STATEMENT
A more generalized formulation of the Anomaly Detection problem
is defined as follows:

Assume a large unlabeled dataset D𝑢 = {𝒙𝑢1 , ..., 𝒙
𝑢
𝑛0 } ∈ X with

X ⊆ R𝑑 which primarily consists of normal instances but may
also be tainted with a mixture of anomalies. On the other hand,
let D𝑀 be a dataset consisted of anomalies that may fall into 𝑀

different anomaly classes (depending on the scenario, the classes
may represent different types of anomalies, risk levels, or other cri-
teria by which the anomalies can be differentiated). Assuming that

the anomaly classes are ordered by some measure of ‘importance’
or ‘priority’, in certain applications one may be solely interested
in detecting the first 𝑘 anomaly classes, where 𝑘 ∈ [1, 𝑀]. In that
regard, we present two major special cases:
(1) 𝑘 = 𝑀 : This special case boils down to the conventional anomaly

detection problem where all classes of anomalies need to be de-
tected assuming that labels are always provided for all𝑀 classes
inD𝑀 . In such a case, the task is to develop a model capable of
accurately predicting𝑦 for an instance 𝒙 , where𝑦 = +1 denotes
an anomaly of any class, while 𝑦 = −1 represents a normal
instance.

(2) 𝑘 < 𝑀 : This special case reduces to the partial anomaly detection
problem, the objective of which is to develop a model capable
of accurately predicting 𝑦 for an instance 𝒙 , where 𝑦 = +1 de-
notes an anomaly which belongs to the first 𝑘 anomaly classes,
while𝑦 = −1 represents either a normal instance or an anomaly
that is not among first 𝑘 classes. Note that the labels for the
first 𝑘 anomaly classes are assumed to be always available in
D𝑘 ⊆ D𝑀 . As for the availability of labels for the anomaly
classes beyond 𝑘 , we consider two supervision scenarios:

(2.1) Fully-supervised partial AD: The labels for the additional𝑀−
𝑘 anomaly classes are also available.

(2.2) Semi-supervised partial AD: The labels for the remaining𝑀−
𝑘 classes are not available.

Note that here the supervision refers exclusively to the avail-
ability of labels for the anomalies, not the normal instances.

For the sake of clarity, we refer to the anomalies from the first
𝑘 classes as target anomalies and to the anomalies from classes
beyond 𝑘 as non-target anomalies.

4 PROPOSED METHOD
We present a framework, GAD, for the generalized AD problem,
and describe three variants designed for different scenarios of the
generalized anomaly detection problem.

4.1 GAD Framework
The primary objective of GAD is to learn latent representations to
better distinguish target anomalies of interest, regardless of whether
𝑘 < 𝑀 or 𝑘 = 𝑀 , from the remaining instances, through training a
neural network Φ(·;W) : X ↦→ F ⊆ R𝑑ℎ to effectively manage the
relationships among normal instances and different levels (classes)
of anomalies.

Aiming for instances other than target anomalies to cluster
tightly, we adopt the same loss term as in Deep SVDD [24] for
the unlabeled dataset D𝑢 . After initializing a neural network Φ
using the encoder’s weights of a pre-trained autoencoder on D𝑢 , 𝒄
is obtained by averaging the outputs of the first forward pass of Φ

and remains constant: 𝒄 =
∑|D𝑢 |

𝑖=1 Φ(𝒙𝑖 ;W)
|D𝑢 | , 𝒙𝑖 ∈ D𝑢 . Here, 𝒄 serves

as a fixed normal center. Since D𝑢 primarily consists of normal
instances, penalizing the distance from the learned representation
of any instance in D𝑢 to 𝒄 ∈ F forces Φ to map normal instances
close to 𝒄 .

Notice that non-target anomalies, in partial anomaly detection
tasks, display patterns that deviate from normality. Similarly, mar-
ginal instances, located at the “margins” of the normal instance
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Figure 1: (a) Illustration of GAD’s dual-center mechanism. (b)
Illustration of 𝐿𝑐𝑜𝑚𝑝𝑎𝑐𝑡 and 𝐿𝑡𝑎𝑟𝑔𝑒𝑡 as a functions of 𝐷ℎ𝑎𝑟𝑑

and 𝐷𝑒𝑎𝑠𝑦 sets. Here, 𝑥1 ∈ 𝐷𝑒𝑎𝑠𝑦 is outside of the sphere
surrounding 𝑐 and thus is considered an easy-to-identify in-
stance; whereas 𝑥2 ∈ Dℎ𝑎𝑟𝑑 at the beginning, and transitions
to 𝑥 ′2 ∈ 𝐷

𝑒𝑎𝑠𝑦 after a few iterations.

space, are also distinct from the majority of normal instances. In
conventional AD scenarios, marginal instances may have similar
characteristics to normal instances and yet be challenging to dif-
ferentiate from anomalies, leading to high false positive rates. On
the other hand, in semi-supervised partial AD scenarios, marginal
instances are located on the surface of the hypersphere encapsulat-
ing the normal instances, in which case they may consist of normal
instances as well as non-target anomalies.

Furthermore, non-target anomalies or marginal instances may
overlap with target anomalies, thereby leading to a high rate of
false positives. Therefore, we propose a dual center mechanism
to minimize the difference between the center 𝒄 and both normal
instances and non-target anomalies (or marginal instances), while
maximizing the difference between target anomalies and both nor-
mal instances and non-target anomalies, as illustrated in Fig. 1(a).
Specifically, in addition to the center 𝒄 , we introduce an anchor 𝒂 to
intentionally segregate target anomalies of interest (regardless of
whether 𝑘 < 𝑀 or 𝑘 = 𝑀) from not only normal instances but also
from non-target anomalies or marginal instances. To achieve this
goal, we construct an auxiliary datasetD𝑎 , which consists of either
non-target anomalies or marginal instances, to obtain an anchor 𝒂.
The anchor 𝒂 represents the average position of D𝑎 and is initially
set to the average output of the first forward pass of Φ on D𝑎 :

𝒂 =

∑ |D𝑎 |
𝑖=1 Φ(𝒙𝑖 ;W)
|D𝑎 | , 𝒙𝑖 ∈ D𝑎 . (1)

Although the auxiliary instances in D𝑎 exhibit distinct charac-
teristics compared to the majority of normal instances, in order to
capture their contrast to target anomalies, we reduce the difference
in the learned representations for the instances in D𝑎 and D𝑢 . We
apply the same technique as for D𝑢 , by penalizing the inverse of
the distance from the instances in D𝑎 to 𝒄 , and use 𝜂 to balance
the trade-off between the influence of unlabeled and auxiliary data.
Since the instances in D𝑎 tend to be located at a certain distance
from the center 𝒄 in the latent space, by appropriately increasing 𝜂,
Φ is able to emphasize the auxiliary data, leading to the learning of
a more compact hypersphere. The loss 𝐿𝑐𝑜𝑚𝑝𝑎𝑐𝑡 designed for D𝑢

and D𝑎 is as follows:

𝐿𝑐𝑜𝑚𝑝𝑎𝑐𝑡 =

|D𝑢 |∑︁
𝑖=1
∥Φ(𝒙𝑖 ;W) − 𝒄 ∥2 + 𝜂

|D𝑎 |∑︁
𝑗=1
∥Φ(𝒙 𝑗 ;W) − 𝒄 ∥2 . (2)

Algorithm 1 The GAD Framework

Input: Unlabeled dataset D𝑢 , labeled anomaly dataset D𝑘 , train-
ing epochs T

Output: Anomaly scoring function 𝒔
1: Pre-train an autoencoder on D𝑢 until convergence;
2: Initialize a neural network Φ using the encoder’s weights;
3: Initialize the center 𝒄 , anchor 𝒂, and an auxiliary dataset D𝑎 ;
4: Initialize the easy-to-identify set D𝑒𝑎𝑠𝑦 ← ∅, and hard-to-

identify set Dℎ𝑎𝑟𝑑 ← ∅;
5: for 𝑒𝑝𝑜𝑐ℎ = 1, . . . ,T do
6: Update D𝑎 if need;
7: Update anchor 𝒂 using Eq. (1);
8: UpdateD𝑒𝑎𝑠𝑦 andDℎ𝑎𝑟𝑑 using Eq. (3) and (4), respectively;
9: Update Φ through optimizing Eq. (6);
10: end for
11: Return scoring function 𝒔 (·) = ∥Φ(·;W) − 𝒄 ∥2.

𝐿𝑐𝑜𝑚𝑝𝑎𝑐𝑡 guides Φ to minimize the volume of the hypersphere that
encloses normal and auxiliary instances in the latent space, thereby
indirectly maximizing the differences between target anomalies
and both normal and auxiliary instances.

To ensure separation of target anomalies from both normal and
auxiliary instances, a simple solution would be to just penalize
the inverse distance to both 𝒄 and 𝒂 for the labeled anomalies in
D𝑘 (𝑘 ∈ [1, 𝑀]). However, for certain target anomalies located very
close to the center 𝒄 , such solution may incur conflicting impact and
hinder their separation from 𝒄 . To address this issue, we propose
a refined loss that takes into account the positions of instances
with respect to 𝒄 and 𝒂. Assume a hypersphere centered at 𝒄 with
a radius equal to the distance between 𝒄 and 𝒂. The set of labeled
target anomalies D𝑘 is partitioned into easy-to-identify set D𝑒𝑎𝑠𝑦

and hard-to-identify set Dℎ𝑎𝑟𝑑 based on their respective positions
in the latent space:

D𝑒𝑎𝑠𝑦 = {𝒙 |𝑑𝑖𝑠𝑡 (Φ(𝒙 ;W), 𝒄) ≥ 𝑑𝑖𝑠𝑡 (𝒂, 𝒄), 𝒙 ∈ D𝑘 }, (3)

Dℎ𝑎𝑟𝑑 = {𝒙 |𝑑𝑖𝑠𝑡 (Φ(𝒙 ;W), 𝒄) < 𝑑𝑖𝑠𝑡 (𝒂, 𝒄), 𝒙 ∈ D𝑘 }, (4)
where D𝑒𝑎𝑠𝑦 ∪ Dℎ𝑎𝑟𝑑 = D𝑡 ,D𝑒𝑎𝑠𝑦 ∩ Dℎ𝑎𝑟𝑑 = ∅ and 𝑑𝑖𝑠𝑡 (·, ·)
represents the distance between two instances in the latent space.

In the case of target instances belonging to D𝑒𝑎𝑠𝑦 , we apply a
penalty to the inverse of the distance to both 𝒄 and 𝒂; while for
target instances within Dℎ𝑎𝑟𝑑 , in order to avoid conflicting impact,
we relax the penalty and only penalize the inverse of the distance
to 𝒄 . The loss function for the target instances is defined as follows:

𝐿𝑡𝑎𝑟𝑔𝑒𝑡 =

|D𝑒𝑎𝑠𝑦 |∑︁
𝑘=1

(
1

∥Φ(𝒙𝑘 ;W) − 𝒄 ∥2
+ 1
∥Φ(𝒙𝑘 ;W) − 𝒂∥2

)
+
|Dℎ𝑎𝑟𝑑 |∑︁
𝑙=1

1
∥Φ(𝒙𝑙 ;W) − 𝒄 ∥2

.

(5)

The role of 𝐿𝑡𝑎𝑟𝑔𝑒𝑡 is to directly maximize the difference between
target anomalies and both normal and auxiliary instances.

As the model training process iterates, the hard and easy-to-
identify sets will be updated along with the update of 𝒂. Namely,
the second component in Eq. (5) will push the target anomalies
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in Dℎ𝑎𝑟𝑑 away from the center 𝒄 . In the meantime, as 𝒂 under-
goes dynamic updates during each epoch according to Eq. (1), it
moves towards 𝒄 , which shrinks the hypersphere and thus aids the
gradual movement of the target anomalies in Dℎ𝑎𝑟𝑑 outside the
hypersphere. Once target anomalies in Dℎ𝑎𝑟𝑑 are located outside
the hypersphere and are transferred to D𝑒𝑎𝑠𝑦 , the first term in
Eq. (5) would push them away from both 𝒄 and 𝒂 (see the example
𝑥2 in Fig. 1(b)). This mechanism allows our model to effectively
identify target anomalies without assuming specific positions for
target and non-target anomalies relative to normal instances (see
Sections 5.3 and 5.4).

The overall objective function of GAD is defined as follows:

min
W

𝐿𝑐𝑜𝑚𝑝𝑎𝑐𝑡 + 𝐿𝑡𝑎𝑟𝑔𝑒𝑡
|D𝑢 | + |D𝑎 | + |D𝑘 |

. (6)

The effect of both 𝐿𝑐𝑜𝑚𝑝𝑎𝑐𝑡 and 𝐿𝑡𝑎𝑟𝑔𝑒𝑡 are illustrated in Fig. 1(b).
We simultaneously optimize the GAD objective and updateW
using the Adam optimizer. After the model converges, the anomaly
scores are calculated as follows: 𝒔 (𝒙) = ∥Φ(𝒙;W) − 𝒄 ∥2, where
𝒔 (𝒙) represents the distance from a mapped instance 𝒙 to the center
𝒄 in the latent space. A higher score indicates a greater probability
of 𝒙 being a target anomaly. Algorithm 1 presents the training
procedure of GAD.

4.2 GAD Variants
We first introduce GAD𝑓 −𝑝𝑎𝑟𝑡𝑖𝑎𝑙 , a variant for partial anomaly de-
tection under full supervision of both target and non-target anom-
alies. Next, we continue by describing GAD𝑠−𝑝𝑎𝑟𝑡𝑖𝑎𝑙 , a variant for
partial anomaly detection in a semi-supervised setting where labels
for non-target anomalies are not available. Finally, we also provide a
variant GAD𝑐𝑜𝑛 designed for addressing the conventional AD task.
The main difference among the three variants lies in the selection
of 𝐷𝑎 in order to generate an 𝒂.

GAD𝑓 −𝑝𝑎𝑟𝑡𝑖𝑎𝑙 . The goal of GAD𝑓 −𝑝𝑎𝑟𝑡𝑖𝑎𝑙 is to prioritize the
identification of target anomalies of interest, rather than aiming to
uniformly detect abnormal instances of all risk levels. Since non-
target anomalies are available, D𝑎 consists of labeled non-target
anomalies.

GAD𝑠−𝑝𝑎𝑟𝑡𝑖𝑎𝑙 . In GAD𝑠−𝑝𝑎𝑟𝑡𝑖𝑎𝑙 , labeled non-target anomalies
are not available. Consider that, apart from the extremely rare
target anomalies, the unlabeled dataset D𝑢 may also contain a
minor fraction of non-target anomalies. Owing to their intrinsic
dissimilarity from normal instances, they are distributed at the
margin of the hypersphere. Thus, D𝑎 is composed of marginal
instances selected from D𝑢 .

It is worth noting that D𝑎 is updated in each iteration. During
each epoch, all instances in D𝑢 are sorted based on their distances
to the center 𝒄 in the latent space F . The instances with the largest
distances are selected to reconstructD𝑎 and are utilized to obtain an
anchor 𝒂 according to Eq. (1). The sorting operation for constructing
D𝑎 introduces an additional time complexity of O(𝑁𝑙𝑜𝑔𝑁 ) per
epoch. Section 4.3 provides a theoretical analysis of this complexity,
while Section 5.7 presents experimental evidence on time efficiency,
showcasing that this design enhances detection effectiveness with
minimal impact on runtime efficiency.

GAD𝑐𝑜𝑛 . In conventional AD tasks, where all types of anomalies
need to be detected, some normal instances that are challenging
to classify are positioned on the margin of the hypersphere. Their
latent representations may overlap with anomalies, leading to an in-
crease in false positives. To alleviate this challenge, GAD𝑐𝑜𝑛 adopts
an approach akin to GAD𝑠−𝑝𝑎𝑟𝑡𝑖𝑎𝑙 and selects marginal instances
fromD𝑢 to determine an anchor 𝒂. This strategy effectively widens
the gap between normal instances and anomalies, leading to a sig-
nificant reduction in false positives.

4.3 Complexity Analysis
We first analyze the complexity of pre-training using an autoen-
coder (Line 1 in Algorithm 1). For a tabular dataset D with N
instances (including normal instances, non-target anomalies and
target anomalies) each having 𝑑 dimensions, the complexity of
the pre-training process can be expressed as O(𝑁𝑑), which is lin-
ear w.r.t. both the input data size and input data dimension. This
computational cost is the same as that of the original Deep SAD.

In terms of the training procedure, the network architecture
remains the same as that of the encoder used for pre-training. In
the initial forward propagation, the computation of the center 𝒄
of the hidden representations of all data points induces a complex-
ity of O(𝑁𝑑ℎ), where 𝑑ℎ is the representation dimension. In each
forward propagation, both the hidden representations and the an-
chor 𝒂 need to be updated (Line 7 in Algorithm 1). Therefore, for
GAD𝑓 −𝑝𝑎𝑟𝑡𝑖𝑎𝑙 , each epoch has a complexity ofO(𝑁 ×𝑑+|D𝑎 |×𝑑ℎ);
for GAD𝑠−𝑝𝑎𝑟𝑡𝑖𝑎𝑙 and GAD𝑐𝑜𝑛 , an additional complexity arises
from selecting the farthest |D𝑎 | marginal instances, resulting in
each epoch having a complexity ofO(𝑁 ×𝑑+|D𝑎 |×𝑑ℎ+(𝑁 −|D𝑎 |−
|D𝑘 |)log(𝑁 − |D𝑎 | − |D𝑘 |)). Due to the extremely small sizes of
D𝑎 and D𝑘 compared to 𝑁 , the asymptotic complexity of a single
epoch of GAD𝑓 −𝑝𝑎𝑟𝑡𝑖𝑎𝑙 ’s training procedure becomes O(𝑁𝑑), or
O(𝑁𝑑 + 𝑁 log𝑁 ) in the case of GAD𝑠−𝑝𝑎𝑟𝑡𝑖𝑎𝑙 and GAD𝑐𝑜𝑛 . After
training, during the inference phase (Line 11 in Algorithm 1), both
proposed GAD variants and Deep SAD have a complexity ofO(𝑁𝑑).

Overall, the training complexity of GAD𝑓 −𝑝𝑎𝑟𝑡𝑖𝑎𝑙 is consistent
with that of the original Deep SAD,while GAD𝑠−𝑝𝑎𝑟𝑡𝑖𝑎𝑙 andGAD𝑐𝑜𝑛

introduce additional complexity due to the sorting of unlabeled
data to identify the most suitable D𝑎 . Considering that the pro-
posed GAD variants effectively address the partial anomaly detec-
tion problem and significantly improve detection performance (as
demonstrated in Section 5), the extra complexity of O(𝑁 log𝑁 ) is
deemed acceptable.

5 EXPERIMENTS
5.1 Experimental Setup
5.1.1 Datasets. To evaluate the effectiveness of the proposed frame-
work, we constructed 14 datasets from two publicly available datasets
(UNSW_NB15 [16] and FMNIST [34]), stemming from diverse do-
mains and having different numbers of target anomaly classes. The
UNSW_NB15 [16] dataset, used in the field of network intrusion, is
a tabular dataset that comprises 7 different types of real anomalies.
We selected 3 of them as target anomalies, while the remaining 4
types were designated as non-target anomalies. The FMNIST [34]
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Table 2: Statistics of datasets. 𝑑 denotes the dimension of a dataset.

dataset training set validation set testing set

dataset name 𝑑 unlabeled (D𝑢 ) target (D𝑘 ) non-target (D𝑎) normal target non-target normal target non-target

UNSW_NB15 196 57,318 300(3) 400(4) 18,600 1,666(3) 2,335(4) 18,600 1,666(3) 2,335(4)
FMNIST1, FMNIST2 28 × 28 5,100 100(1) 100(1) 1,000 100(1) 100(1) 1,000 100(1) 100(1)

FMNIST3 28 × 28 5,100 100(1) 0 1,000 100(1) 0 1,000 100(1) 0
SQB 182 134,299* 205(3) 205(5) 33,575* 41(3) 41(5) 148,323* 129(3) 463(5)

The number of distinct categories present in a dataset is surrounded with “()”.
* Since normal instances are not available in the SQB dataset, we consider the unlabeled instances as normal for validation and testing.

dataset is a collection of images consisting of 10 fashion categories.
We selected instances from these different categories as normal, tar-
get and non-target anomalies to assess the detection performances
of models in various settings.

To simulate real-world anomaly detection scenarios, for the
UNSW_NB15 and FMNIST datasets, we randomly sampled a small
number of target and non-target anomalies as labeled datasets. Next,
we integrated both target and non-target anomalies into the set of
the normal instances at a default contamination ratio of 2% to gen-
erate unlabeled datasets. This process allowed us to construct the
datasets UNSW_NB15, FMNIST1 and FMNIST2 (the difference be-
tween FMNIST1 and FMNIST2 mainly lies in the distance between
normal instances and target anomalies). Additionally, to simulate
the conventional anomaly detection scenario, we generated another
dataset, FMNIST3, where non-target anomalies were excluded from
both the unlabeled and labeled datasets.

Real-world application: SQB is a real-world fraud detection dataset
derived from actualmerchants’ daily transactions on the ShouQianBa
aggregated payment platform3. The task is to predict if a merchant
is engaged in fraudulent activities based on their daily transactions.
Based on practical demands, specific anomalies such as gambling
and money laundering are categorized as target anomalies due to
their significant risk and potential harm, while anomalies such as
cash-out and fake orders, which pose a relatively lower risk, are
categorized as non-target anomalies. We collected transaction data
for 165,478 merchants from April 2021 to April 2022, and extracted
182 features such as transaction frequency and payment amount.
In total, 316,197 unlabeled instances were obtained, along with 375
target and 709 non-target anomalies. It is worth noting that, the
SQB dataset’s unlabeled data includes a significant yet unknown
proportion of hidden target and non-target anomalies, the statistics
of which are presented in Table 2.

5.1.2 Competing Methods & Evaluation Metrics. We present a to-
tal of 11 baselines for comparison, consisting of four unsuper-
vised methods (DeepIF [35], iForest [15], OC-SVM [27], Deep
SVDD [24]), five semi-supervised methods (PReNet [19],Deep
SAD [25],DevNet [20],PIA-WAL [43],Kernel-BasedMethod [33]),
and two fully-supervised methods (Random Forest (RF) [2],Deep
SAD + Random Forest (RF)). For all unsupervised and semi-
supervised methods, only the labels of target anomalies are used
for training. For fully-supervised methods, labels of non-target
anomalies are also used.

3https://www.shouqianba.com/

When running GAD, Deep SAD, Deep SVDD, and the kernel-
basedmethod on the high-dimensional tabular datasets (UNSW_NB15
and SQB), we utilized an MLP with three hidden layers having 168,
64, and 32 hidden nodes. DevNet, PIA-WAL, PReNet, DeepIF, iForest,
OC-SVM and Random Forest were run with their default settings
recommended in their respective papers.

As for the FMNIST image dataset, we used a variant of LeNet [10]
to obtain the image representations needed for GAD, Deep SAD,
Deep SVDD, and the kernel-based method. For DevNet, we used
its official implementation for ingesting image data. For PIA-WAL,
PReNet, DeepIF, iForest, OC-SVMand Random Forest, which are not
specifically designed for image data, we applied an unsupervised
autoencoder (based on a variant of LeNet) to map the FMNIST
images into a 64-dimensional space before running these methods.

The Leaky ReLU function 𝑔(𝑧) = max(0, 𝑧) + 0.01 ∗ min(0, 𝑧)
was used for gradient propagation, and an L2-norm regularizer was
applied to each hidden layer to mitigate overfitting. All models’
parameters were fine-tuned using a grid search on the validation
set of each dataset. Regarding the kernel-based method, we utilized
an autoencoder to calculate the reconstruction error and modified
its loss function based on the formula provided in [33]. For the re-
maining baselines, we used the publicly available implementations
provided by the authors of their respective papers. All methods
were run on a workstation equipped with an Intel(R) Xeon(R) Gold
6240R CPU, a Tesla V100-SXM2-32GB GPU, and 256 GB of RAM.

Area Under the Receiver Operating Characteristic Curve (AU-
ROC) and Area Under the Precision-Recall Curve (AUPRC) were
used to evaluate the performance of the models. Since AUPRC holds
greater significance as an evaluation metric for anomaly detection
problems, our focus primarily lies on AUPRC in the subsequent
analysis. All reported AUROC and AUPRC values are averages
(along with their standard deviation) over 10 independent experi-
ment runs.

5.2 Effectiveness on Real-world Datasets
Weevaluated themodels’ effectiveness on five datasets: UNSW_NB15,
SQB, FMNIST1, FMNIST2, and FMNIST3. FMNIST3 illustrates a con-
ventional AD scenario without non-target anomalies, while the
other four datasets represent partial AD scenarios.

The AUPRC and AUROC performances of three GAD variants
and 11 competing methods are shown in Table 3. Overall, the GAD
variants demonstrate superior performance in terms of AUPRC and
AUROC across the five datasets, respectively. For example, in terms
of AUPRC, GAD𝑓 −𝑝𝑎𝑟𝑡𝑖𝑎𝑙 yields improvements of 0.8%-61.35% over

https://www.shouqianba.com/
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Table 3: AUPRC and AUROC performance (with ± standard deviation) of three GAD variants (GAD𝑓 −𝑝𝑎𝑟𝑡𝑖𝑎𝑙 , GAD𝑠−𝑝𝑎𝑟𝑡𝑖𝑎𝑙 and
GAD𝑐𝑜𝑛) and eleven competing methods. The best performance is boldfaced; the runner-up is underlined.

Model
use of
labeled
non-targ.

AUPRC AUROC
Partial AD Conventional AD Partial AD Conventional AD

UNSW_NB15 SQB FMNIST1 FMNIST2 FMNIST3 UNSW_NB15 SQB FMNIST1 FMNIST2 FMNIST3

DeepIF × 56.06±3.57 1.34±0.43 19.9±0.55 10.66±0.38 22.85±1.34 93.94±0.18 86.21±0.34 78.63±1.32 60.17±1.26 63.72±1.09
DeepSVDD × 47.7±2.76 0.37±0.18 21.71±1.02 18.7±1.93 22.61±3.08 93.3±0.51 66.25±15.46 78.17±1.8 61.49±2.2 62.59±3.33
iForest × 36.24±7.49 1.63±0.37 25.5±2.53 10.67±0.51 15.79±0.98 83.97±1.7 90.92±0.61 86.39±1.61 58.48±1.02 63.77±0.98
OC-SVM × 30.93±0.0 1.03±0.0 14.69±0.0 11.14±0.0 15.63±0.0 88.82±0.0 84.98±0.0 74.42±0.0 59.11±0.0 63.27±0.0
DeepSAD × 72.24±1.04 23.0±0.98 94.78±1.32 64.58±4.68 70.68±4.03 96.35±0.11 97.57±0.48 98.29±0.75 89.0±1.69 90.46±2.12
DevNet × 65.71±1.42 14.89±0.89 94.38±1.52 44.08±6.45 57.87±3.96 94.95±0.3 97.36±0.84 98.56±0.5 81.98±2.26 85.94±1.95

Kernel-Based × 68.58±5.39 2.53±0.52 88.97±2.47 44.83±8.5 44.69±4.61 94.57±0.34 85.11±0.61 97.12±0.72 75.06±5.26 75.0±3.1
PIA-WAL × 72.2±2.08 18.58±1.02 64.31±10.8 19.46±8.57 35.12±7.42 95.65±0.14 96.14±1.0 88.85±3.2 68.32±8.69 75.58±2.94
PReNet × 63.28±0.61 23.53±1.72 93.72±0.18 49.5±3.27 58.34±0.6 94.2±0.21 90.0±1.62 99.24±0.12 79.58±2.83 82.68±2.16

GAD𝒔−𝒑𝒂𝒓𝒕 𝒊𝒂𝒍 × 74.74±1.1 30.23±1.12 97.1±0.3 72.6±1.04 - 97.3±0.07 98.74±0.72 99.31±0.2 92.12±0.62 -
RF (3 classes) ✓ 78.33±0.18 19.21±1.02 91.43±0.51 52.28±1.77 - 97.52±0.05 97.15±0.52 98.58±0.11 86.14±0.19 -

Deep SAD+RF (2 classes) ✓ 54.31±3.1 1.73±0.85 76.82±6.64 14.74±2.73 - 13.25±0.64 0.27±0.01 15.51±2.5 11.84±1.41 -
GAD𝒇 −𝒑𝒂𝒓𝒕 𝒊𝒂𝒍 ✓ 79.13±0.21 33.84±2.9 96.57±0.35 76.09±1.0 - 97.62±0.05 98.77±0.78 99.31±0.15 92.71±0.4 -
RF (2 classes) - - - - - 43.38±2.11 - - - - 84.23±0.69
GAD𝒄𝒐𝒏 - - - - - 78.29±1.3 - - - - 93.24±0.57
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Figure 2: UMAP embeddings of the selected FMNIST datasets
and AUPRC ± standard deviation w.r.t. different scenarios.
For the partial AD scenarios, N denotes the normal instances,
T denotes target anomalies and 1-4 denote different selec-
tions of non-target anomalies. The FMNIST1,· and FMNIST2,·

datasets are sorted by the ascending inter-class distances be-
tween their respective non-target and target anomaly classes.
In the case of conventional AD, N denotes the normal in-
stances, and 1-4 denote different selections of anomalies.
FMNIST3,· is sorted based on the ascending inter-class dis-
tances between their respective anomaly and normal classes.

fully-supervised baselines. GAD𝑠−𝑝𝑎𝑟𝑡𝑖𝑎𝑙 attains lifts ranging from
2.5% to 53.14% relative to the semi-supervised baselines. GAD𝑐𝑜𝑛

surpasses all baselines with lifts ranging from 7.61% to 62.66%.
It is worth noting that when non-target anomalies are relatively

further away from both normal instances and target anomalies in
the FMNIST2 dataset, the average AUPRC gap between the pro-
posed models and the semi-supervised baselines increased from
9.6% to 29.86% on the FMNIST2 dataset, compared to the perfor-
mances on the FMNIST1 dataset where target anomalies are located
far away from the normal and non-target anomalies. This shows the
superiority of the proposed framework in addressing the complex
partial anomaly detection problem.

The two fully-supervised models exhibit poor performance with
limited labeled instances, rendering them inapplicable to real-world
scenarios. Their testing is omitted in subsequent experiments.

5.3 Effect of Overlap Degree and Positions of
Non-Target Anomalies on Partial AD

To explore the effect of different positions for target and non-target
anomalies relative to normal instances in partial anomaly detec-
tion tasks, we conducted experiments using various class combina-
tions of the FMNIST dataset. FMNIST1,· corresponds to scenarios in
which target anomalies are clearly distinguishable from normal in-
stances. We then chose non-target anomalies based on their degree
of overlap with the target anomalies in a descending order, resulting
in the creation of four datasets: FMNIST1,1, FMNIST1,2, FMNIST1,3,
and FMNIST1,4. On the other hand, FMNIST2,· represents scenarios
where target anomalies overlap significantly with normal instances.
Non-target anomalies were chosen based on their degree of overlap
with the target anomalies in a descending order to construct four
datasets: FMNIST2,1, FMNIST2,2, FMNIST2,3, and FMNIST2,4.

The AUPRC values along with their standard deviations w.r.t.
different scenarios of FMNIST are presented in Fig. 2. We omit-
ted three unsupervised baselines on the FMNIST dataset due to
their poor AUPRC values. GAD𝑓 −𝑝𝑎𝑟𝑡𝑖𝑎𝑙 and GAD𝑠−𝑝𝑎𝑟𝑡𝑖𝑎𝑙 con-
sistently outperform all competing methods in terms of AUPRC
across eight datasets (first two rows in Fig. 2). In comparison to the
five semi-supervised baselines, GAD𝑓 −𝑝𝑎𝑟𝑡𝑖𝑎𝑙 and GAD𝑠−𝑝𝑎𝑟𝑡𝑖𝑎𝑙

demonstrate average improvements of 15.36% and 17.39%, respec-
tively, while showcasing enhanced predictive stability.

In the experiments conducted on the FMNIST1,· group (refer to
the first row in Fig. 2), GAD𝑓 −𝑝𝑎𝑟𝑡𝑖𝑎𝑙 and GAD𝑠−𝑝𝑎𝑟𝑡𝑖𝑎𝑙 achieve
an AUPRC improvement of 2.34%-17.1% and 2.4%-17.13% over the
semi-supervised baselines, respectively. As the overlap degree be-
tween non-target and target anomalies decreases (transitioning
from FMNIST1,1 to FMNIST1,4 ), we observe improvements in the
performances of bothGADvariants aswell as the five semi-supervised
baselines. This could be attributed to the fact that, when the non-
target anomalies are less overlapped with the target anomalies,
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Figure 3: Detection performance of models w.r.t. a different (a,b) number of target anomalies, (c) number of target and non-target
anomalies, (d) number of unknown non-target anomaly classes, and (e) number of unseen non-target anomaly classes. Note
that “n.-t.” in the legends refers to “non-target anomalies”.

the semi-supervised methods (which leverage prior knowledge on
target anomalies) can identify target anomalies more easily.

Moving on to the more challenging group FMNIST2,· (refer to
the second row in Fig. 2), GAD𝑓 −𝑝𝑎𝑟𝑡𝑖𝑎𝑙 and GAD𝑠−𝑝𝑎𝑟𝑡𝑖𝑎𝑙 ex-
hibit significant AUPRC improvements of 8.21%-58.01% and 3.32%-
55.38% compared to the semi-supervised baselines, respectively.
From the results on the FMNIST2,· group, we make the following
observations: (1) Although all methods demonstrate poorer perfor-
mance compared to their performances on the FMNIST1,· datasets,
GAD𝑓 −𝑝𝑎𝑟𝑡𝑖𝑎𝑙 and GAD𝑠−𝑝𝑎𝑟𝑡𝑖𝑎𝑙 exhibit more substantial improve-
ments on FMNIST2,· than the other baselines. This can be attributed
to the fact that target anomalies overlap severely with the normal in-
stances in the FMNIST2,· group, making targeted anomaly detection
more challenging. The employed dual center mechanism proves to
be effective in accurately distinguishing overlapped instances. (2)
Transitioning from the FMNIST2,2 dataset to the FMNIST2,4 dataset,
the performances of the semi-supervised methods improve. This is
due to the decrease in the overlap degree between the non-target
anomalies and the target anomalies. However, all methods obtained
higher detection accuracies on the FMNIST2,1 dataset compared to
their performances on the FMNIST2,2 dataset. The reason is that
non-target anomalies have a severe overlap with normal instances
in FMNIST2,1, which makes partial anomaly detection much easier.

5.4 Effect of Overlap Degree and Positions of
Anomalies on Conventional AD

Similar to Section 5.3, we construct the dataset group FMNIST3,· to
explore the impact of the anchor 𝒂with respect to different positions
of target and non-target anomalies relative to normal instances.
For the FMNIST3,· group, anomalies were chosen based on their
descending overlap degree with the normal instances, resulting in
four datasets: FMNIST3,1, FMNIST3,2, FMNIST3,3, and FMNIST3,4.

The AUPRC performances of GAD𝑐𝑜𝑛 and five semi-supervised
methods along with their standard deviations w.r.t. different scenar-
ios of FMNIST3,· are presented in the third row of Fig. 2. GAD𝑐𝑜𝑛

exhibits an AUPRC improvement of 1.71%-61.23% compared to the
semi-supervised baselines. All methods yielded improvements from
the FMNIST3,1 dataset to the FMNIST3,4 dataset, as the overlap de-
gree between anomalies and normal instances decreases. Results
on the FMNIST3,· datasets show that using marginal instances to
widen the gap between normal and anomalous instances is effective
in conventional anomaly detection, especially with significant class
overlap.

5.5 Effectiveness under Different Quantities of
Labeled Anomalies

To investigate the effectiveness of the models w.r.t. the quantity of
available labeled anomalies, we designed the following experiments
by adjusting: (1) the number of labeled target anomalies, (2) the
number of labeled non-target anomalies, and (3) the number of
labeled non-target anomaly classes in the training set. The experi-
ments for partial and conventional anomaly detection tasks were
conducted on the UNSW_NB15 and FMNIST3 datasets, respectively.

AUPRC w.r.t. the number of labeled target anomalies for partial
anomaly detection task is plotted in Fig. 3(a), while for conventional
anomaly detection task is plotted in Fig. 3(b). The performances of
all methods improve with more labeled target anomalies. Notably,
all GAD variants significantly outperform semi-supervised base-
lines at all levels of labeled target anomalies. In partial anomaly
detection, GAD𝑠−𝑝𝑎𝑟𝑡𝑖𝑎𝑙 achieves an average AUPRC lift of 1.31%
with only 3 target anomalies compared to Deep SAD using 300
target anomalies, showcasing substantial data utilization efficiency.

We next evaluate the effectiveness of GAD𝑓 −𝑝𝑎𝑟𝑡𝑖𝑎𝑙 concerning
the number of both labeled target and non-target anomalies. Since
Deep SAD yields the highest AUPRC among the semi-supervised
baselines, we omit the results of other semi-supervised baselines.
The number of labeled non-target anomalies ranges from 4 to 400,
while the number of labeled target anomalies is varied between
3 and 300. From Fig. 3(c), several observations can be made: (1)
GAD𝑓 −𝑝𝑎𝑟𝑡𝑖𝑎𝑙 and GAD𝑠−𝑝𝑎𝑟𝑡𝑖𝑎𝑙 consistently outperform Deep
SAD. (2) The performance of GAD𝑓 −𝑝𝑎𝑟𝑡𝑖𝑎𝑙 improves as the num-
ber of labeled non-target anomalies increases. (3) When the num-
ber of labeled target anomalies is small (e.g. the number is 3),
GAD𝑠−𝑝𝑎𝑟𝑡𝑖𝑎𝑙 obtains even better results than GAD𝑓 −𝑝𝑎𝑟𝑡𝑖𝑎𝑙 .

Effect of Unknown and Unseen Non-target Anomalies.
Fig. 3(d) shows AUPRC under various quantities of known non-
target anomalies and numbers of unknown non-target anomaly
classes in the training set. Since the test set remained unchanged,
the semi-supervised baselines are not sensitive to changes in the
quantity and types of labeled non-target anomalies in the training
set. We still chose Deep SAD as the reference baseline. Fig. 3(d)
demonstrates that: (1) Even without knowledge of all non-target
anomaly classes, GAD𝑓 −𝑝𝑎𝑟𝑡𝑖𝑎𝑙 still exhibits significant improve-
ments over the baseline. For example, when three classes of non-
target anomalies remain unknown, GAD𝑓 −𝑝𝑎𝑟𝑡𝑖𝑎𝑙 yields an AUPRC
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Figure 4: (a) Detection performance of models as a function of contamination ratio on the partial (left) and conventional (right)
anomaly detection tasks. (b) Trade-off between the time required for each training epoch (represented on a logarithmic scale)
and AUPRC performance. (c) Detection performance of GAD𝑓 −𝑝𝑎𝑟𝑡𝑖𝑎𝑙 as a function of 𝜂 on the UNSW_NB15 dataset.

improvement of up to 3.84%. (2) Utilizing only one labeled non-
target anomaly per class still enhances the detection performance.

Unlike Fig. 3(d), which illustrates the model performance w.r.t.
unknown non-target classes, Fig. 3(e) illustrates the model perfor-
mance w.r.t. unseen non-target classes. The difference between un-
known and unseen lies in the presence of corresponding non-target
anomalies in the unlabeled set. Unseen non-target anomalies may
not be part of the unlabeled set, which makes detection more chal-
lenging and requires a model with better generalization compared
to the unknown scenario. Deep SAD was chosen for comparison
due to its best performance among the semi-supervised methods.
Fig. 3(e) demonstrates that: (1) GAD𝑓 −𝑝𝑎𝑟𝑡𝑖𝑎𝑙 demonstrates strong
generalization performance across unseen non-target anomalies,
ranging from 0 to 4 classes. This demonstrates the generalization
ability of using a small amount of labeled non-target anomalies to
obtain an anchor 𝒂 for assisting in target anomaly detection. (2)
The performance of GAD𝑠−𝑝𝑎𝑟𝑡𝑖𝑎𝑙 declines slightly as non-target
anomalies in the unlabeled data have not been encountered, caus-
ing the inaccurate positioning of anchor 𝒂. (3) Both GAD variants
demonstrate superior generalization performance compared to the
best-performing baseline Deep SAD.

5.6 Robustness under Anomaly Contamination
We next evaluated the robustness of models against contamination
ratios. The experiments for partial and conventional anomaly de-
tection tasks were conducted on the UNSW_NB15 and FMNIST3
datasets, respectively. We purposefully varied the contamination
ratio in the training dataset from 2% to 16%, while the number of
labeled target and non-target anomalies remained the same.

AUPRC w.r.t. different contamination ratios for the partial and
conventional anomaly detection tasks is presented in Fig. 4(a). As
the contamination ratio increases, the learning of the normal class
becomes insufficient, resulting in varying degrees of decline in
AUPRC across all methods. However, it is evident that all GAD
variants maintain a stable and superior AUPRC, consistently out-
performing all competing methods across all contamination ratios.
The reason behind this is that the anomaly contamination primarily
influences the 𝐿𝑐𝑜𝑚𝑝𝑎𝑐𝑡 loss, the value of which is much smaller
compared to that of 𝐿𝑡𝑎𝑟𝑔𝑒𝑡 . Thus, the anomaly contamination has
a minimal impact on the optimization of the proposed framework.

5.7 Time Efficiency and Sensitivity Analysis
We evaluated the time efficiency of three GAD variants and other
semi-supervised baselines on three datasets. Fig. 4(b) illustrates the
logarithmic representation of the time required for one epoch of
model training and the corresponding AUPRC. The following was
observed: (1) GAD𝑓 −𝑝𝑎𝑟𝑡𝑖𝑎𝑙 exhibits time efficiency comparable to
Deep SAD while achieving an AUPRC improvement ranging from
1.79% to 10.84% across different datasets. (2) GAD𝑠−𝑝𝑎𝑟𝑡𝑖𝑎𝑙 involves
a sorting process but maintains comparable time efficiency to Deep
SAD and enhances AUPRC by 0.83%-7.23% on various datasets. (3)
Among the semi-supervised methods, PIA-WAL displays the poor-
est time efficiency due to challenges with GAN convergence. (4)
DevNet shows distinct performance patterns on tabular datasets
(SQB and UNSW_NB15) and the image dataset (FMNIST) due to
differences in the default neural network architecture. DevNet on
FMNIST uses ResNet with a parameter count of 11.69M [7], signifi-
cantly larger than the variant of LeNet (0.22M) [10] used by other
semi-supervised methods, including three GAD variants.

We next examine the model’s sensitivity w.r.t. the hyperparame-
ter 𝜂, varied from 2 to 500, which controls the weight contributed by
D𝑎 in 𝐿𝑐𝑜𝑚𝑝𝑎𝑐𝑡 . Fig. 4(c) shows the AUPRC of GAD𝑓 −𝑝𝑎𝑟𝑡𝑖𝑎𝑙 w.r.t.
different values of 𝜂. Increasing 𝜂 appropriately strengthens the
model’s attention on marginal instances or non-target anomalies,
thus promoting compact representations. However, excessively
large 𝜂 leads to insufficient learning of normal instances, and thus
to a significant performance decline. The findings demonstrate that
GAD𝑓 −𝑝𝑎𝑟𝑡𝑖𝑎𝑙 achieves optimal performance on the UNSW_NB15
dataset when 𝜂 is set to 10.

6 CONCLUSION
This paper introduces a generalized anomaly detection problem.We
present an all-encompassing framework GAD and three variants
tailored for different anomaly detection scenarios. Experimental
results demonstrate significant improvements in detection perfor-
mance over state-of-the-art baselines for both partial and conven-
tional anomaly detection tasks.
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