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Background and Motivation

« Anomaly detection (AD): Identifying data objects significantly deviating from the majority of the data.
« Applications:

il
A

Fraud detection Risks management Safe-guarding against Disease detection in
in finance [3, 28] in banking [10] network intrusions in healthcare [22]
cybersecurity [38]

[3] Cao, B. et al. (2018). Collective fraud detection capturing inter-transaction dependency. In KDD 2017 Workshop on Anomaly Detection in Finance. PMLR, 66—75.
[10] Lee, M. C. et al. (2020). Autoaudit: Mining accounting and time-evolving graphs. In 2020 IEEE International Conference on Big Data (Big Data). IEEE, 950-956.
[22] Ruff, L. et al. (2021). A unifying review of deep and shallow anomaly detection. Proceedings of the IEEE, 109(5), 756-795.
[28] Tao, J. et al. (2019) Mvan: Multi-view attention networks for real money trading detection in online games. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 2536-2546.
[38] Zhang, S. et al. (2015). A novel anomaly detection approach for mitigating web-based attacks against clouds. In 2015 IEEE 2nd International Conference on Cyber Security and Cloud Computing
(pp. 289-294). IEEE.



Background and Motivation

EXistin

« Unsupervised AD methods: OC-SVM, Isolation forest, Deep SVDD, etc.

g approaches:

« Semi-supervised AD methods: Deep SAD, DevNet, the Kernel-based method, PIA-WAL, etc.

Limitations:
« Existing approaches aim to identify anomalies uniformly while ignoring any priority among anomalies
« However, in real-world scenarios, anomalies often exhibit distinct levels of priority

Example:
» Risk control scenario of an aggregated payment platform
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Background and Motivation

Motivation:

» Given the efficiency constraints of risk management and scarcity and high cost of human resources, the precise
identification of high-risk anomalies becomes imperative, while adopting a more permissive stance toward low-risk
behaviors is deemed a preferable strategy.

Two straightforward solutions failed:
« Semi-supervised AD method supervised binary classifier
(separate all types of anomalies from normal instances) (differentiate target from non-target anomalies)

« Supervised three-class classification approach (distinguish between normal instances, non-target and target anomalies)

Challenges:
« Labels for all types of non-target anomalies are challenging to obtain as they are not of primary interest i

and hence are rarely labeled. In some scenarios, we only have access to labeled target anomalies of interest.
= Maximizing the labeled data utilization is of paramount importance in such scenarios.

« Class overlap occurs among target anomalies, non-target anomalies, and marginal normal instances.
= Effectively differentiating them to minimize the FPR is key to precise identification of target anomalies.



Related Work

Categories Models Shortcomings
classical methods Joiest (TN 201?)
Unsupervised OC-SVM (Neural computation 2001)  suffer from limited inclusion of
methods DeepSVDD (ICML 2018 prior knowledge
deep learning-based methods DeepiForest (TKDE 2023) = leading to high FPR

ECOD (TKDE 2022)

REPEN (SIGKDD 2018)

leverage labeled anomalies to Deep SAD (ICLR 2020)

enhance performance

DevNet (SIGKDD 2019) « Treat all anomalies equally
Semi-supervised mitigate the negative Elite (SIGKDD 2021) . !dentify-a” types of anomalies
methods : s Kernel-based Method (IJCAI 2022) into a single class.
influence of noisy instances ADMOE (AAAI 2023)
: : = May result in high FPR when
emphasis the marginal PIA-WAL (DASFAA 2022) only a specific subset of nomalies
instances requires accurate identification.
Weakly-supervised detect unseen/unknown AABIGAN (IJCAI 2022)

methods anomalies DPLAN (SIGKDD 2023)



Problem Statement

Generalized Anomaly Detection: decreasing priority

» Unlabeled dataset: D = {x7,...,x5,,} € X « Anomalies (M classes): 1,2,..,kk+1,..,M
\\. J J
Y
target  non-target
anomalies anomalies

Problem Goal Data accessibility

y = +1=) anomaly of any classes

1. k = M: conventional AD problem { Labels of DM are available.

y = -1 = normal instance

y = +1= anomaly belongs to first k classes

2. k < M: partial AD problem { Labels of DX c DM are available.

y = -1 =) normal instance or anomalies not
among first k classes V 2.1 fully-supervised partial AD:
additional M — k anomaly classes

* Note that here the supervision refers exclusively to the availability 2.2 ??mi'SUperVised partial AD:
of labels for the anomalies, not the normal instances. additional M — k anomaly classes



Proposed Method

The Dual-Center Mechanism

* Leompact = Z D (xi; W) — c”2 +1
i=1

Designed to maximize the distinction between normal and
(target) anomalies, and moreover, between (target) anomalies
and marginal instances (or non-target anomalies).

DY g oo
> @ (xiW)
| D¥|

c = ,Xj € DU

25 o W)

) a
Dl , Xx; € D“.

a

The auxiliary data D¢ consists of either labeled non-target
anomalies or unlabeled marginal instances.

| D] | D2
1 (x ;W) —cl|?
=1

J

¢ normal instances

® center
°F non — target anomalies

® anchor
& target anomalies

maximize
—p

minimize



Proposed Method

 The set of labeled target anomalies D* is partitioned into easy-to-identify set D¢%SY and hard-to-identify set D"¢"d
based on their respective positions in the latent space.

DY = {x|dist(®(x; W), c) > dist(a,c),x € DF),
Dhard = (x|dist(®(x; W), ¢) < dist(a,c),x € D},
DEasy | Dhard _ Dt, DEASY Dhard =0,

|z)easy| 1 1
Ltarget = Z +
1@(es W) —cll* |2(xk; W) - all?

k=1
z)hard
| Derd] 1
|D(x;; W) —cl|2 ¢ normal instances maximize
= ; —5
I=1 ® center
Leompact + Ltarget non — target anomalies

» Overall objective function: min minimize
W | D4+ |D9| + | DF| anchor €
& target anomalies

« Anomaly score:  s(x) = ||®(x; W) — c||?



Proposed Method

Three GAD variants and corresponding tasks

Method Task Composition of D¢

! CADf-partial fully — supervised labeled non — target
. partial AD anomalies

( N )
G ADS-partial semi — supervised marginal instances
partial AD ) selected from D%

marginal instances

con 1
GAD conventional AD selected from DU

« GADJ-partial:  pa congsists of labeled non-target anomalies.
« GADSs~partial-  pajs composed of marginal instances selected from D%
« GAD‘™. D% is composed of marginal instances selected from D%



Experimental Setting

Datasets:
dataset training set validation set testing set
dataset name d unlabeled (D%) target (D) non-target (D%) normal target non-target normal target non-target
UNSW_NB15 196 57,318 300(3) 400(4) 18,600 1,666(3)  2,335(4) 18,600 1,666(3)  2,335(4)
FMNIST!, FMNIST? 28 x 28 5,100 100(1) 100(1) 1,000  100(1) 100(1) 1,000  100(1) 100(1)
FMNIST3 28 X 28 5,100 100(1) 0 1,000  100(1) 0 1,000  100(1) 0
SQB 182 134,299 205(3) 205(5) 33,575  41(3) 41(5) 148,323°  129(3) 463(5)

The number of distinct categories present in a dataset is surrounded with “()”.
Since normal instances are not available in the SQB dataset, we consider the unlabeled instances as normal for validation and testing.

 Default contamination ratio: 2%
« Labeled data proportion: 0.31%-4.05%

Competing methods:
« Unsupervised methods: OC-SVM (Neural Computation 2001), Isolation forest (ICDM 2008), Deep SVDD (PMLR 2018)

« Semi-supervised methods: Deep SAD (ICLR 2020), DevNet (KDD 2019), the Kernel-based method (1JCAI 2022), PIA-
WAL (DASFAA 2022)

* Fully-supervised methods: Deep SAD + RF (2 classes), RF (3 classes)



Experiments

Effectiveness on Real-world Datasets

Model use of AUPRC AUROC
labeled Partial AD Conventional AD Partial AD Conventional AD
non-targ, | UNSW_NB15 SQB FMNIST!  FMNIST? FMNIST? UNSW_NB15 SOB FMNIST!  FMNIST? FMNIST?
DeepSVDD X 47.7+2.76 0.37+0.18  21.71+1.02  18.7+1.93 22.61+3.08 93.3+0.51  66.25+15.46  78.17+1.8  61.49+2.2 62.59+3.33
iForest X 36.24+7.49 1.63+£0.37 2554253  10.67+0.51 15.79+0.98 83.97+1.7 90.92+0.61  86.39+1.61  58.48+1.02 63.77+0.98
OC-SVM X 30.93+0.0 1.03+0.0 14.69+00  11.14+0.0 15.63+0.0 88.82+0.0 84.98+0.0  74.42+0.0  59.11+0.0 63.27+0.0
DeepSAD X 72.24+1.04 23.040.98  94.78+1.32  64.58+4.68 70.68+4.03 96.35+0.11  97.57+0.48  98.29+0.75  89.0+1.69 90.46+2.12
DevNet X 65.71+1.42  14.89+0.89  9438+152 44.08+6.45 57.87+3.96 94.95+0.3 97.36+0.84  98.56+0.5  81.98+2.26 85.94+1.95
Kernel-Based X 68.58+5.39 2.53+0.52  88.97+2.47  44.83+85 44.69+4.61 9457+0.34  85.11+0.61  97.1240.72  75.06+5.26 75.0+3.1
PIA-WAL X 72.242.08 18.58+1.02  64.31+10.8 19.46+8.57 35.12+7.42 95.65+0.14 96.14+1.0  88.85+3.2  68.32+8.69 75.58+2.94
GADs~partial X 74.74+1.1  30.23+1.12  97.1+0.3  72.6+1.04 - 97.3+0.07  98.74+0.72  99.31+0.2  92.12+0.62 -
RF (3 classes) v 78.33+0.18  19.21+1.02  91.43+0.51 52.28+1.77 - 97.52+0.05  97.15+0.52  98.58+0.11  86.14+0.19 -
Deep SAD+RF (2 classes) v 54.31+3.10 1.73+0.85 76.82+6.64 14.74+2.73 - 13.25+0.64 0.27+0.01 15.51+£2.50 11.84+1.41 -
GAD/—partial v 79.13+0.21  33.84+2.9 96.57+0.35 76.09+1.0 - 97.62+0.05 98.77+0.78 99.31+0.15 92.71+0.4 -
RF (2 classes) - - - - - 43.38+2.11 - - - - 84.23+0.69
GAD¢°" - - - - - 78.29+1.3 - - - - 93.24+0.57
Observations:

« GAD/-partial yjo|ds improvements of 0.8%-61.35% over fully-supervised baselines.
« GAD?®~Partial gitains lifts ranging from 2.5% to 53.14% relative to the semi-supervised baselines.
* GADC°" surpasses all baselines with lifts ranging from 7.61% to 62.66%o.




Experiments

Effect of Overlap Degree on AD Performance  mmgan i mzmean s mlIGAD®" ==DeepSAD EEEDevNet BEEKemel-Based EE=PIA-WAL EEEPReNet
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Partial AD scenarios:

 FMNIST! and FMNISTZ: sorted by the ascending inter-class
distance between non-target and target anomalies.
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= Observation: With no assumption for the relative positions of normal
Instances, target and non-target anomalies, GAD consistently and effectively
identifies target anomalies.



Experiments

Effectiveness under Different Quantities of Labeled Anomalies
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All GAD variants significantly outperform the semi-supervised baselines across all levels of labeled target anomalies (a, b).

Even without knowledge of all non-target anomaly classes, GADY~Partial exhibits significant lifts over the baseline (c, d).

GAD/-pertial demonstrates strong robust performance across unseen non-target anomaly classes ().

All GAD variants showcases a substantial improvement in data utilization efficiency.



Experiments

Robustness under Anomaly Contamination
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All GAD variants maintain a stable and superior AUPRC, consistently outperforming all baselines across all
contamination ratios.

GAD achieves significant detection performance improvement with acceptable extra complexity.

GAD is not sensitive to the hyperparameter n.



Conclusion

« This work emphasizes the concept of priority among anomalies and precisely identifies anomalies
of primary interest to meet real-world requirements.

« We address a generalized anomaly detection problem which covers a broader and more practical
range of real-world scenarios.

= Proposed an ‘umbrella’ (all-encompassing) framework GAD that addresses different AD scenarios.

« GAD and its variants demonstrate notable performance as well as high utilization of labeled data.

=> Significantly reduce the FPR caused by class overlaps, insufficient and incomplete labeled data,
and positions of non-target anomalies.

* Code link: https://github.com/ZhouF-ECNU/GAD



https://github.com/ZhouF-ECNU/GAD
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