

Towards a Generalized Framework for Anomaly Detection Encompassing Different Risk Levels and Supervision Settings

Rulan Wei¹, Zewei He¹, Martin Pavlovski², Fang Zhou^{1*}

¹School of Data Science and Engineering, East China Normal University, China ²Temple University, Philadelphia, PA, USA

* Corresponding author

Background and Motivation

- Anomaly detection (AD): Identifying data objects significantly deviating from the majority of the data.
- Applications:

- [3] Cao, B. et al. (2018). Collective fraud detection capturing inter-transaction dependency. In KDD 2017 Workshop on Anomaly Detection in Finance. PMLR, 66–75.
- [10] Lee, M. C. et al. (2020). Autoaudit: Mining accounting and time-evolving graphs. In 2020 IEEE International Conference on Big Data (Big Data). IEEE, 950–956.
- [22] Ruff, L. et al. (2021). A unifying review of deep and shallow anomaly detection. Proceedings of the IEEE, 109(5), 756-795.
- [28] Tao, J. et al. (2019) Mvan: Multi-view attention networks for real money trading detection in online games. In *Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*. 2536–2546.
- [38] Zhang, S. et al. (2015). A novel anomaly detection approach for mitigating web-based attacks against clouds. In 2015 IEEE 2nd International Conference on Cyber Security and Cloud Computing (pp. 289-294). IEEE.

Background and Motivation

Existing approaches:

- Unsupervised AD methods: OC-SVM, Isolation forest, Deep SVDD, etc.
- Semi-supervised AD methods: Deep SAD, DevNet, the Kernel-based method, PIA-WAL, etc.

Limitations:

- Existing approaches aim to identify anomalies **uniformly** while **ignoring any priority** among anomalies
- However, in real-world scenarios, anomalies often exhibit distinct levels of priority

Example:

• Risk control scenario of an aggregated payment platform

Background and Motivation

Motivation:

 Given the efficiency constraints of risk management and scarcity and high cost of human resources, the precise identification of high-risk anomalies becomes imperative, while adopting a more permissive stance toward low-risk behaviors is deemed a preferable strategy.

Two straightforward solutions failed:

- Semi-supervised AD method (separate all types of anomalies from normal instances)
- \rightarrow supervised binary classifier
 - (differentiate target from non-target anomalies)
- Supervised three-class classification approach (distinguish between normal instances, non-target and target anomalies)

Challenges:

- Labels for all types of non-target anomalies are challenging to obtain as they are not of primary interest and hence are rarely labeled. In some scenarios, we only have access to labeled target anomalies of interest.
 ⇒ Maximizing the labeled data utilization is of paramount importance in such scenarios.
- Class overlap occurs among target anomalies, non-target anomalies, and marginal normal instances.
 ⇒ Effectively differentiating them to minimize the FPR is key to precise identification of target anomalies.

Related Work

Categories	-	Shortcomings				
<i>Unsupervised</i> methods	classical methods	iForest (TKDD 2012) OC-SVM (Neural computation 2001)	Suffer from limited inclusion of			
	deep learning-based methods	prior knowledge ⇒ leading to high FPR				
<i>Semi-supervised</i> methods	leverage labeled anomalies to enhance performance	REPEN (SIGKDD 2018) Deep SAD (ICLR 2020) DevNet (SIGKDD 2019)	 Treat all anomalies equally 			
	mitigate the negative influence of noisy instances	Elite (SIGKDD 2021) Kernel-based Method (IJCAI 2022) ADMoE (AAAI 2023)	 Identify all types of anomalies into a single class. ⇒ May result in high FPR when 			
	emphasis the marginal instances	PIA-WAL (DASFAA 2022)	only a specific subset of nomalies requires accurate identification.			
<i>Weakly-supervised</i> methods	detect unseen/unknown anomalies	AABiGAN (IJCAI 2022) DPLAN (SIGKDD 2023)				

Problem Statement

Generalized Anomaly Detection:

• Unlabeled dataset:
$$\mathcal{D}^u = \{x_1^u, ..., x_{n_0}^u\} \in X^+$$

• Anomalies (*M* classes):

target non-target anomalies anomalies

Problem	Goal	Data accessibility			
1. $k = M$: conventional AD pro-	blem $\begin{cases} y = +1 \implies \text{anomaly of any classes} \\ y = -1 \implies \text{normal instance} \end{cases}$	Labels of \mathcal{D}^M are available.			
<i>2.</i> $k < M$: partial AD problem	$\begin{cases} y = +1 \implies \text{anomaly belongs to first k classes} \\ y = -1 \implies \text{normal instance or anomalies not} \\ \text{among first k classes} \end{cases}$	Labels of $\mathcal{D}^k \subseteq \mathcal{D}^M$ are available. 2.1 fully-supervised partial AD: additional $M - k$ anomaly classes			

* Note that here the supervision refers exclusively to the availability of labels for the anomalies, not the normal instances.

2.2 semi-supervised partial AD: additional M - k anomaly classes

Proposed Method

The Dual-Center Mechanism

• Designed to maximize the distinction between normal and (target) anomalies, and moreover, between (target) anomalies and marginal instances (or non-target anomalies).

$$c = \frac{\sum_{i=1}^{|\mathcal{D}^{u}|} \Phi(\boldsymbol{x}_{i};\mathcal{W})}{|\mathcal{D}^{u}|}, \boldsymbol{x}_{i} \in \mathcal{D}^{u}$$
$$a = \frac{\sum_{i=1}^{|\mathcal{D}^{a}|} \Phi(\boldsymbol{x}_{i};\mathcal{W})}{|\mathcal{D}^{a}|}, \quad \boldsymbol{x}_{i} \in \mathcal{D}^{a}.$$

• The auxiliary data D^a consists of either labeled non-target anomalies or unlabeled marginal instances.

•
$$L_{compact} = \sum_{i=1}^{|\mathcal{D}^u|} \|\Phi(\mathbf{x}_i; \mathcal{W}) - \mathbf{c}\|^2 + \eta \sum_{j=1}^{|\mathcal{D}^a|} \|\Phi(\mathbf{x}_j; \mathcal{W}) - \mathbf{c}\|^2$$

Proposed Method

• The set of labeled target anomalies D^k is partitioned into <u>easy-to-identify set</u> D^{easy} and <u>hard-to-identify set</u> D^{hard} based on their respective positions in the latent space.

$$\begin{split} \mathcal{D}^{easy} &= \{ \mathbf{x} | dist(\Phi(\mathbf{x}; \mathcal{W}), \mathbf{c}) \geq dist(\mathbf{a}, \mathbf{c}), \mathbf{x} \in \mathcal{D}^k \}, \\ \mathcal{D}^{hard} &= \{ \mathbf{x} | dist(\Phi(\mathbf{x}; \mathcal{W}), \mathbf{c}) < dist(\mathbf{a}, \mathbf{c}), \mathbf{x} \in \mathcal{D}^k \}, \\ \mathcal{D}^{easy} \cup \mathcal{D}^{hard} &= \mathcal{D}^t, \quad \mathcal{D}^{easy} \cap \mathcal{D}^{hard} = \emptyset, \\ L_{target} &= \sum_{k=1}^{|\mathcal{D}^{easy}|} \left(\frac{1}{||\Phi(\mathbf{x}_k; \mathcal{W}) - \mathbf{c}||^2} + \frac{1}{||\Phi(\mathbf{x}_k; \mathcal{W}) - \mathbf{a}||^2} \right) \\ &+ \sum_{l=1}^{|\mathcal{D}^{hard}|} \frac{1}{||\Phi(\mathbf{x}_l; \mathcal{W}) - \mathbf{c}||^2}. \end{split}$$

• Overall objective function: $\min_{\mathcal{W}} \frac{L_{compact} + L_{target}}{|\mathcal{D}^u| + |\mathcal{D}^a| + |\mathcal{D}^k|}$

• Anomaly score:
$$s(x) = \|\Phi(x; W) - c\|^2$$

Proposed Method

<u>Three GAD variants</u> and corresponding tasks

- $GAD^{f-partial}$: D^a consists of labeled non-target anomalies.
- **GAD**^{s-partial}: D^a is composed of marginal instances selected from D^u
- **GAD**^{con}: D^a is composed of marginal instances selected from D^u

Datasets:

dataset		training set			validation set			testing set		
dataset name	d	unlabeled (\mathcal{D}^u)	target (\mathcal{D}^k)	non-target (\mathcal{D}^a)	normal	target	non-target	normal	target	non-target
UNSW_NB15	196	57,318	300(3)	400(4)	18,600	1,666(3)	2,335(4)	18,600	1,666(3)	2,335(4)
FMNIST ¹ , FMNIST ²	28×28	5,100	100(1)	100(1)	1,000	100(1)	100(1)	1,000	100(1)	100(1)
FMNIST ³	28×28	5,100	100(1)	0	1,000	100(1)	0	1,000	100(1)	0
SQB	182	134,299 [*]	205(3)	205(5)	33,575 [*]	41(3)	41(5)	148,323 [*]	129(3)	463(5)

The number of distinct categories present in a dataset is surrounded with "()".

Since normal instances are not available in the SQB dataset, we consider the unlabeled instances as normal for validation and testing.

- Default contamination ratio: 2%
- Labeled data proportion: 0.31%-4.05%

Competing methods:

- Unsupervised methods: OC-SVM (Neural Computation 2001), Isolation forest (ICDM 2008), Deep SVDD (PMLR 2018)
- Semi-supervised methods: Deep SAD (ICLR 2020), DevNet (KDD 2019), the Kernel-based method (IJCAI 2022), PIA-WAL (DASFAA 2022)
- **Fully-supervised** methods: Deep SAD + RF (2 classes), RF (3 classes)

Effectiveness on Real-world Datasets

Madal	use of	AUPRC					AUROC					
Widdel	labeled	Partial AD			Conventional AD	Partial AD				Conventional AD		
	non-targ.	UNSW_NB15	SQB	FMNIST ¹	FMNIST ²	FMNIST ³	UNSW_NB15	SQB	FMNIST ¹	FMNIST ²	FMNIST ³	
DeepSVDD	×	47.7±2.76	0.37 ± 0.18	21.71 ± 1.02	18.7±1.93	22.61±3.08	93.3±0.51	66.25 ± 15.46	78.17±1.8	61.49 ± 2.2	62.59±3.33	
iForest	×	36.24±7.49	1.63 ± 0.37	25.5 ± 2.53	10.67 ± 0.51	15.79 ± 0.98	83.97±1.7	90.92 ± 0.61	86.39±1.61	58.48 ± 1.02	63.77 ± 0.98	
OC-SVM	×	30.93±0.0	1.03 ± 0.0	14.69 ± 0.0	11.14 ± 0.0	15.63 ± 0.0	88.82±0.0	84.98 ± 0.0	74.42 ± 0.0	59.11±0.0	63.27±0.0	
DeepSAD	×	72.24 ± 1.04	23.0±0.98	94.78 ± 1.32	64.58 ± 4.68	70.68 ± 4.03	96.35 ± 0.11	97.57 ± 0.48	98.29 ± 0.75	89.0±1.69	90.46 ± 2.12	
DevNet	×	65.71±1.42	14.89 ± 0.89	94.38 ± 1.52	44.08 ± 6.45	57.87±3.96	94.95±0.3	97.36 ± 0.84	<u>98.56±0.5</u>	81.98±2.26	$85.94{\pm}1.95$	
Kernel-Based	×	68.58±5.39	2.53 ± 0.52	88.97 ± 2.47	44.83±8.5	44.69 ± 4.61	94.57±0.34	85.11 ± 0.61	97.12 ± 0.72	75.06 ± 5.26	75.0 ± 3.1	
PIA-WAL	×	72.2±2.08	18.58 ± 1.02	64.31±10.8	19.46 ± 8.57	35.12 ± 7.42	95.65 ± 0.14	96.14 ± 1.0	88.85±3.2	68.32±8.69	$75.58 {\pm} 2.94$	
GAD ^{s-partial}	×	74.74±1.1	30.23 ± 1.12	97.1±0.3	$72.6{\pm}1.04$	-	97.3±0.07	98.74±0.72	99.31±0.2	$92.12{\pm}0.62$	-	
RF (3 classes)	\checkmark	78.33±0.18	<u>19.21±1.02</u>	<u>91.43±0.51</u>	52.28 ± 1.77	-	<u>97.52±0.05</u>	97.15±0.52	98.58±0.11	86.14±0.19	-	
Deep SAD+RF (2 classes)	\checkmark	54.31±3.10	1.73 ± 0.85	76.82 ± 6.64	14.74 ± 2.73	-	13.25 ± 0.64	0.27 ± 0.01	15.51 ± 2.50	11.84 ± 1.41	-	
GAD ^{f-partial}	\checkmark	79.13±0.21	33.84±2.9	96.57±0.35	$76.09{\pm}1.0$	-	97.62±0.05	98.77±0.78	99.31±0.15	92.71±0.4	-	
RF (2 classes)	-	-	-	-	-	43.38±2.11	-	-	-	-	84.23±0.69	
GAD ^{con}	-	-	-	-	-	78.29±1.3	-	-	-	-	93.24±0.57	

Observations:

- *GAD^{f-partial}* yields improvements of **0.8%-61.35%** over **fully-supervised baselines**.
- *GAD^{s-partial}* attains lifts ranging from 2.5% to 53.14% relative to the semi-supervised baselines.
- *GAD^{con}* surpasses all baselines with lifts ranging from 7.61% to 62.66%.

Effect of Overlap Degree on AD Performance

(on different class combinations of FMNIST)

Left panel: UMAP embeddings of the FMNIST datasets.

- N: Normal
- T: Target
- 1-4: (non-target) anomaly selections

Right panel: AUPRC ± standard deviation

Partial AD scenarios:

• FMNIST¹ and FMNIST²: sorted by the ascending inter-class distance between non-target and target anomalies.

Conventional AD scenarios

• FMNIST³ is sorted by the anomalies inter-class distance between anomaly and normal classes.

⇒ *Observation:* With no assumption for the relative positions of normal instances, target and non-target anomalies, GAD consistently and effectively identifies target anomalies.

Effectiveness under Different Quantities of Labeled Anomalies

Observations:

- All GAD variants significantly outperform the semi-supervised baselines across all levels of labeled target anomalies (a, b).
- Even without knowledge of all non-target anomaly classes, $GAD^{f-partial}$ exhibits significant lifts over the baseline (c, d).
- *GAD^{f-partial}* demonstrates strong robust performance across unseen non-target anomaly classes (e).
- All GAD variants showcases a substantial improvement in data utilization efficiency.

Observations:

- All GAD variants maintain a stable and superior AUPRC, consistently outperforming all baselines across all contamination ratios.
- GAD achieves significant detection performance improvement with acceptable extra complexity.
- GAD is not sensitive to the hyperparameter η .

Conclusion

- This work emphasizes the concept of **priority among anomalies** and precisely identifies anomalies of primary interest to meet real-world requirements.
- We address a generalized anomaly detection problem which covers a **broader and more practical range** of real-world scenarios.

⇒ Proposed an 'umbrella' (all-encompassing) framework GAD that addresses different AD scenarios.

- GAD and its variants demonstrate notable performance as well as high utilization of labeled data.
 ⇒ Significantly reduce the FPR caused by class overlaps, insufficient and incomplete labeled data, and positions of non-target anomalies.
- Code link: <u>https://github.com/ZhouF-ECNU/GAD</u>