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Background and Motivation

• Anomaly detection (AD): Identifying data objects significantly deviating from the majority of the data. 

• Applications:

Fraud detection 

in finance [3, 28]

Risks management 

in banking [10] 

Safe-guarding against 

network intrusions in 

cybersecurity [38]

Disease detection in 

healthcare [22]
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Background and Motivation

Existing approaches:

• Unsupervised AD methods: OC-SVM, Isolation forest,  Deep SVDD, etc.

• Semi-supervised AD methods: Deep SAD, DevNet, the Kernel-based method, PIA-WAL, etc.

Limitations: 

• Existing approaches aim to identify anomalies uniformly while ignoring any priority among anomalies

• However, in real-world scenarios, anomalies often exhibit distinct levels of priority

Example: 

• Risk control scenario of an aggregated payment platform

Normal 

instances

Target 

anomalies

Non-target 

anomalies

Normal instances

(millions of merchants, 

billions of transactions)

Target anomalies

(high risk, 20 times)

Aggregated payment platform

Non-target anomalies

(low risk, thousands daily)

50 times!



Background and Motivation

Motivation:

• Given the efficiency constraints of risk management and scarcity and high cost of human resources, the precise 

identification of high-risk anomalies becomes imperative, while adopting a more permissive stance toward low-risk 

behaviors is deemed a preferable strategy. 

Two straightforward solutions failed:
• Semi-supervised AD method supervised binary classifier

(separate all types of anomalies from normal instances)  (differentiate target from non-target anomalies)

• Supervised three-class classification approach (distinguish between normal instances, non-target and target anomalies)

Challenges:

• Labels for all types of non-target anomalies are challenging to obtain as they are not of primary interest 

and hence are rarely labeled. In some scenarios, we only have access to labeled target anomalies of interest. 

⇨ Maximizing the labeled data utilization is of paramount importance in such scenarios.

• Class overlap occurs among target anomalies, non-target anomalies, and marginal normal instances. 

⇨ Effectively differentiating them to minimize the FPR is key to precise identification of target anomalies.

→



Related Work

Categories Models Shortcomings

Unsupervised

methods

classical methods
iForest (TKDD 2012)

OC-SVM (Neural computation 2001) Suffer from limited inclusion of 

prior knowledge

⇨ leading to high FPRdeep learning-based methods

DeepSVDD (ICML 2018

DeepiForest (TKDE 2023)

ECOD (TKDE 2022)

Semi-supervised

methods

leverage labeled anomalies to 

enhance performance

REPEN (SIGKDD 2018)

Deep SAD (ICLR 2020)

DevNet (SIGKDD 2019) • Treat all anomalies equally

• Identify all types of anomalies 

into a single class. 

⇨ May result in high FPR when  

only a specific subset of nomalies  

requires accurate identification.

mitigate the negative 

influence of noisy instances

Elite (SIGKDD 2021)

Kernel-based Method (IJCAI 2022)

ADMoE (AAAI 2023)

emphasis the marginal 

instances
PIA-WAL (DASFAA 2022)

Weakly-supervised 

methods

detect unseen/unknown 

anomalies

AABiGAN (IJCAI 2022)

DPLAN (SIGKDD 2023)



Problem Statement

Generalized Anomaly Detection:

• Unlabeled dataset:

decreasing priority

• Anomalies (𝑀 classes): 1, 2, … , 𝑘, 𝑘 + 1,… ,𝑀

target 

anomalies

non-target 

anomalies

1. 𝑘 = 𝑀: conventional AD problem

2. 𝑘 < 𝑀: partial AD problem

y = +1 anomaly of any classes

y = -1 normal instance

y = +1 anomaly belongs to first k classes

y = -1 normal instance or anomalies not 

among first k classes

Labels of           are available. 

2.1 fully-supervised partial AD:

additional 𝑀 − 𝑘 anomaly classes

2.2 semi-supervised partial AD:

additional 𝑀 − 𝑘 anomaly classes

Labels of are available. 

* Note that here the supervision refers exclusively to the availability 

of labels for the anomalies, not the normal instances. 

Goal Data accessibilityProblem



The Dual-Center Mechanism

• Designed to maximize the distinction between normal and 

(target) anomalies, and moreover, between (target) anomalies 

and marginal instances (or non-target anomalies). 

• The auxiliary data 𝐷𝑎 consists of either labeled non-target 

anomalies or unlabeled marginal instances.

•

Proposed Method



Proposed Method

• The set of labeled target anomalies 𝐷𝑘 is partitioned into easy-to-identify set 𝐷𝑒𝑎𝑠𝑦 and hard-to-identify set 𝐷ℎ𝑎𝑟𝑑

based on their respective positions in the latent space.

• Overall objective function:

• Anomaly score:



Proposed Method

𝑀𝑒𝑡ℎ𝑜𝑑 𝑇𝑎𝑠𝑘

𝐺𝐴𝐷𝑓−𝑝𝑎𝑟𝑡𝑖𝑎𝑙

𝐺𝐴𝐷𝑠−𝑝𝑎𝑟𝑡𝑖𝑎𝑙

𝐺𝐴𝐷𝑐𝑜𝑛

Three GAD variants and corresponding tasks

• 𝑮𝑨𝑫𝒇−𝒑𝒂𝒓𝒕𝒊𝒂𝒍: 𝐷𝑎 consists of labeled non-target anomalies.

• 𝑮𝑨𝑫𝒔−𝒑𝒂𝒓𝒕𝒊𝒂𝒍: 𝐷𝑎 is composed of marginal instances selected from 𝐷𝑢

• 𝑮𝑨𝑫𝒄𝒐𝒏: 𝐷𝑎 is composed of marginal instances selected from 𝐷𝑢

𝑓𝑢𝑙𝑙𝑦 − 𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑
𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝐴𝐷

𝑠𝑒𝑚𝑖 − 𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑
𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝐴𝐷

𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝐴𝐷

𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝐷𝑎

𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑛𝑜𝑛 − 𝑡𝑎𝑟𝑔𝑒𝑡
𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠

𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝐷𝑢

𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝐷𝑢



Experimental Setting 

Datasets:

• Default contamination ratio: 2%

• Labeled data proportion: 0.31%-4.05%

Competing methods:

• Unsupervised methods: OC-SVM (Neural Computation 2001), Isolation forest (ICDM 2008),  Deep SVDD (PMLR 2018)

• Semi-supervised methods: Deep SAD (ICLR 2020), DevNet (KDD 2019), the Kernel-based method (IJCAI 2022), PIA-

WAL (DASFAA 2022)

• Fully-supervised methods: Deep SAD + RF (2 classes), RF (3 classes)



Experiments 
Effectiveness on Real-world Datasets 

Observations:

• 𝑮𝑨𝑫𝒇−𝒑𝒂𝒓𝒕𝒊𝒂𝒍 yields improvements of 0.8%-61.35% over fully-supervised baselines. 

• 𝑮𝑨𝑫𝒔−𝒑𝒂𝒓𝒕𝒊𝒂𝒍 attains lifts ranging from 2.5% to 53.14% relative to the semi-supervised baselines. 

• 𝑮𝑨𝑫𝒄𝒐𝒏 surpasses all baselines with lifts ranging from 7.61% to 62.66%. 



Experiments
Effect of Overlap Degree on AD Performance 

(on different class combinations of FMNIST)

⇨ Observation: With no assumption for the relative positions of normal 

instances, target and non-target anomalies, GAD consistently and effectively 

identifies target anomalies.

Left panel: UMAP embeddings of the FMNIST datasets. 

• N: Normal

• T: Target

• 1-4: (non-target) anomaly selections 

Right panel: AUPRC ± standard deviation

Partial AD scenarios: 

• FMNIST¹ and FMNIST²: sorted by the ascending inter-class 

distance between non-target and target anomalies. 

Conventional AD scenarios

• FMNIST³ is sorted by the anomalies inter-class distance 

between anomaly and normal classes.



Experiments
Effectiveness under Different Quantities of Labeled Anomalies 

Observations:

• All GAD variants significantly outperform the semi-supervised baselines across all levels of labeled target anomalies (a, b).

• Even without knowledge of all non-target anomaly classes, 𝑮𝑨𝑫𝒇−𝒑𝒂𝒓𝒕𝒊𝒂𝒍 exhibits significant lifts over the baseline (c, d).

• 𝑮𝑨𝑫𝒇−𝒑𝒂𝒓𝒕𝒊𝒂𝒍 demonstrates strong robust performance across unseen non-target anomaly classes (e).

• All GAD variants showcases a substantial improvement in data utilization efficiency.



Experiments

Robustness under Anomaly Contamination Time Efficiency Sensitivity Analysis 

Observations:

• All GAD variants maintain a stable and superior AUPRC, consistently outperforming all baselines across all 

contamination ratios. 

• GAD achieves significant detection performance improvement with acceptable extra complexity.

• GAD is not sensitive to the hyperparameter 𝜂.



Conclusion

• This work emphasizes the concept of priority among anomalies and precisely identifies anomalies 

of primary interest to meet real-world requirements.

• We address a generalized anomaly detection problem which covers a broader and more practical 

range of real-world scenarios.

⇨ Proposed an ‘umbrella’ (all-encompassing) framework GAD that addresses different AD scenarios.

• GAD and its variants demonstrate notable performance as well as high utilization of labeled data.

⇨ Significantly reduce the FPR caused by class overlaps, insufficient and incomplete labeled data, 

and positions of non-target anomalies.

• Code link: https://github.com/ZhouF-ECNU/GAD

https://github.com/ZhouF-ECNU/GAD
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