
Targeted Detection of Anomalous Merchants on
Integrated Payment Platforms via Multifaceted

Transaction Representation Learning
Guanyu Lu

School of Data Science and Engineering
East China Normal University

Shanghai, China
gylu@stu.ecnu.edu.cn

Xiang Lin
School of Data Science and Engineering

East China Normal University
Shanghai, China

51205903046@stu.ecnu.edu.cn

Martin Pavlovski
Temple University

Philadelphia, PA, USA
martin.pavlovski@temple.edu

Xinyu Zhang
Shanghai Shouqianba Internet

Technology Co., Ltd.
Shanghai, China

yudi@shouqianba.com

Fang Zhou∗
School of Data Science and Engineering

East China Normal University
Shanghai, China

fzhou@dase.ecnu.edu.cn

Abstract—Integrated payment platforms have significantly im-
proved the convenience of daily life, yet they also present a
fertile ground for fraudulent behavior. This paper focuses on
the detection of anomalous merchants at the transaction level on
such platforms, as locating specific anomalous patterns at such
a granular level aids in taking corresponding security measures.
However, in an integrated payment scenario, a limited number of
imprecise labels are accessed at the merchant level rather than
the transaction level, thus rendering transaction-level anomaly
detection quite difficult. Meanwhile, the collected data comprises
not only normal merchants and target anomalies (of interest)
but also non-target anomalies (of lesser interest). To address
these challenges, we adopt a two-step approach. First, we cluster
merchants exhibiting similar behaviors and filter out potential
non-target anomalies to better understand the transactional
patterns among normal merchants. Then, we learn transaction
representations encapsulated within hyperspheres, considering
three key aspects: transaction context, historical information,
and merchant information; and leverage such representations
to determine anomaly scores for individual transactions. Real-
world transactions from an integrated payment platform were
used in the experiments. The results demonstrate that our model
outperforms several state-of-the-art baselines, with an average
AUPRC improvement of 10.5%-11.6%, 16.5%-16.7%, and 3.7%-
5.4% in the three discovered merchant clusters.

Index Terms—anomaly detection, integrated payment plat-
form, transaction representation learning

I. INTRODUCTION

Despite the development of mobile payment methods in fi-
nancial technology, a single mobile payment application (e.g.,
WeChat or Alipay) cannot satisfy the payment preferences
of different users. Integrated payment platforms integrate the
payment services of more than one bank or a non-banking
financial institution to meet the diverse needs of consumers
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and accommodate their payment patterns. A large number
of merchants in such platforms generate tens of millions of
transactions on a daily basis, nevertheless, with anomalous
behaviors hidden in some of them. Thus, effective anomaly
detection is crucial for creating a more secure and reliable
payment environment on integrated payment platforms.

Some recent works, such as [1], [2], are focused on anomaly
detection within an integrated payment setting. However, these
studies cannot pinpoint which transactions within anomalous
merchants are truly abnormal. To implement appropriate se-
curity measures effectively, it is crucial to precisely iden-
tify anomalous transactions. Taking a detected anomalous
merchant as an example, it may generate hundreds or even
thousands of transactions daily, but only a few transactions
are anomalous. The exhaustive scrutiny of each transaction for
such anomalous merchants demands a significant investment
of human power and time. Therefore, detecting anomalous
merchants at the transaction level becomes critical. Further-
more, in the integrated payment platform, there exist two types
of anomalies: one comprises target anomalies (of interest),
such as fraud and gambling recharge, which have the potential
to inflict significant economic losses; the other type involves
non-target anomalies (of lesser interest), such as cash out
and click farming, posing minimal threats to the platform.
The platform requires precise and targeted detection of these
anomalous merchants that are of interest [1]. However, existing
anomaly detection methods [3]–[7] are prone to interference
from non-target anomalies, leading to many false positives.

Detecting anomalous merchants at the transaction level
poses three primary challenges: (1) Imprecise data labels. La-
bels are defined on a merchant level (sourced from consumer
feedback and judgments based on industry rules) instead of
a transaction level. These merchant-level labels only indicate
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Fig. 1: The workflow of TransAD.

whether a merchant has engaged in illegal activities, such as
fraud or gambling recharge, but it is unclear which transaction
involved anomalous behavior. Therefore, supervised anomaly
detection methods [6]–[8] are inapplicable to unlabeled trans-
action data. (2) Lack of prior information on non-target
anomalous merchants. Due to the wide variety of non-target
anomaly categories covered and the lesser interest in these
anomalies, acquiring all types of labeled non-target anomalies
proves quite difficult [1]. (3) Diverse business activities of
merchants. For example, breakfast-serving merchants have
fewer active hours of successful transactions and higher trans-
action density in unit time than merchants offering services
throughout the day.

In this work, we introduce TransAD (Transaction-level
Anomaly Detection), a model for transaction-level detection
of target anomalous merchants (illustrated in Fig. 1), whose
detection component is designed based on the concept of one-
class classification. To address the challenges posed by diverse
merchant activities and non-target anomalies in unlabeled
datasets, we apply clustering and non-target anomaly filtering
to obtain homogeneous data to learn better representations of
normal transactions. The former groups together merchants
with similar transaction patterns, while the latter reduces
the interference of non-target anomalies in target anomaly
detection by leveraging the transaction distribution differences
among merchants. The detection component learns transaction
representations encapsulated within hyperspheres and con-
siders three aspects derived from our data analysis (Section
III-B): (1) Transaction context. For normal merchants, a given
transaction and its time-adjacent transactions are typically a
result of similar payment behavior. If a transaction differs
significantly from its transaction context in terms of features
(e.g., amount or payment type), it is more likely to be flagged
as anomalous. (2) Historical transactions. Normal merchants’
transactions within a specific historical period typically exhibit
a pattern of regularity, whereas anomalous transactions deviate

from these patterns (e.g., by occurring during periods with
no prior transactions in the merchant’s history). (3) Merchant
information. Merchant information can enhance anomaly de-
tection when transaction information alone is insufficient. For
instance, a transaction’s amount significantly differing from a
merchant’s daily average can be indicative of an anomalous
transaction. These aspects allow for leveraging richer informa-
tion to assist in learning transaction representations.

To verify the effectiveness of TransAD, we conducted
experiments on a real-world dataset collected from an inte-
grated payment platform. The results indicate that, compared
with several state-of-the-art baselines, TransAD exhibits supe-
rior performance in terms of AUPRC, with an improvement
of 10.5%-11.6%, 16.5%-16.7%, and 3.7%-5.4% on average
for the three transaction clusters defined in Section III-B,
respectively. In addition, TransAD can also identify more
target anomalies among the top-99 results compared to its
alternatives. This will reduce the burden of manual verification
for the business personnel.

In brief, the main contributions of this paper are summarized
as follows:

• To the best of our knowledge, this work is the first
to achieve target anomalous merchant detection at a
transaction level (involving large-scale data processing)
in an integrated payment platform.

• We propose a novel anomaly detection framework,
TransAD, to alleviate the deterioration of detection per-
formance due to various challenges (e.g., imprecisely
assigned labels, absent prior knowledge of non-target
anomalies, and diverse merchant activities) with data
from integrated payment platforms.

• Experimental results obtained on a real-world dataset col-
lected from an integrated payment platform demonstrate
that TransAD has a higher practical value compared to
state-of-the-art baselines.



II. RELATED WORK

Collecting large-scale labeled anomaly data in the real world
is difficult and costly, rendering fully supervised anomaly de-
tection impractical. Hence, over the past decades, research has
pivoted to unsupervised methods, typically based on isolation
concept [4], [9], density estimation [10], and probability dis-
tribution [11]. Yet these methods often fail to detect anomalies
resembling normal patterns, leading to the application of deep
learning. Autoencoder-based methods [12]–[14] learn latent
representations and detect anomalies based on reconstruction
errors, while generative adversarial learning [15], [16] uses
generators and discriminators to separate outliers through
reconstruction errors. However, the above schemes tend to ne-
glect between-samples relationship, which introduces certain
limitations. Recently, diffusion models, such as LMD [17] and
DiffAD [18], have made progress in anomaly detection tasks.
However, diffusion model-based anomaly detection algorithms
are mainly applied to image data and not applicable to tabular
data.

Although collecting large-scale labeled data in anomaly
detection is challenging, obtaining a small amount of labeled
data in some scenarios is possible. Hence, semi-supervised
methods can capture additional information from such readily
accessible labeled data to further improve anomaly detection
performance. (1) On the one hand, some scholars regard
normal data as the target class and generate a description
for that class, thereby distinguishing the target class from
other classes [19]. DeepSVDD [20] constructs a hypersphere
of normal data and determines anomalies based on samples’
distances to the hypersphere’s center. OCAN [21] trains a
discriminator on generated malicious samples at sparse bound-
aries of benign samples. Nonetheless, these one-class methods
require highly pure training data, making them unsuitable for
the diverse merchant activities in integrated payment scenarios.
(2) On the other hand, some methods focus primarily on
anomalous data, such as PU learning-based methods [22], [23],
but these methods struggle with minor differences between
normal and anomalous patterns in large datasets. Some state-
of-the-art approaches [2], [6], [7], [24] use a small amount of
labeled anomalies to guide model training, but are only capable
of detecting anomalous merchants without identifying specific
anomalous transactions. Models such as TitAnt [25] aim at
detecting online real-time anomalous transactions by utilizing
labeled anomalous transaction records; however, transaction-
level labels are unavailable in the integrated payment scenario
studied in this work.

III. METHODOLOGY

A. Problem Definition

Let M = {m1,m2, . . . ,ml} be a set containing l mer-
chants, where MA ⊂ M is a set of labeled target anomalous
merchants, and MN ⊂ M is a set of unlabeled merchants,
such that

∣∣MA
∣∣ ≪

∣∣MN
∣∣. The corresponding transaction

set of the merchants is T = {T1, T2, . . . , Tl}, where Ti =
{ti1, ti2, . . . , tir} indicates that a merchant mi on a given

day conducts r transactions. Note that we do not know which
transactions in the dataset are anomalous.

Let Cik be a set of transactions adjacent in time to tik within
a context window (w minutes) and

{
hd−T
ik , . . . , hd−1

ik

}
are the

statistics of transactions that occurred around the same period
as tik in the past T days (e.g., if tik occurred at 8:03 AM,
then

{
hd−T
ik , . . . , hd−1

ik

}
contains the statistics of transactions

of merchant mi that occurred between 8:00 AM and 9:00 AM
in the past T days).

Given a transaction tik of a merchant mi, its adjacent trans-
action set Cik and historical information

{
hd−T
ik , . . . , hd−1

ik

}
,

the goal is to predict its anomaly score S(tik). If S(tik) > τS ,
then tik is considered a target anomalous transaction, where
τS is an anomaly score threshold.

For a merchant mi, if there exists a target anomalous trans-
action in Ti, mi is considered a target anomalous merchant
and Y (mi) = 1; otherwise Y (mi) = 0.

B. Data Analysis

The objects of our data analysis are the catering merchants
in China using a certain integrated payment platform. Fig. 2
shows the density distribution of the data features. We found
that anomalous merchants have the following characteristics.

(1) Dense transactions (Fig. 2(a)): The number of transac-
tions of anomalous merchants within ten minutes is higher
than that of normal merchants. The time interval between
transactions of normal merchants is typically several minutes
or more as customers need to select the product they wish
to purchase and then open a QR code or a mini program
(that is, a mobile app that can be utilized without the need
for downloading and installing an entire shopping app) to
complete the payment. In contrast, anomalous merchants may
generate multiple transactions in an instant (usually less than
one second) due to simultaneous payments by numerous
people.

(2) High number of non-local transactions (Fig. 2(b)): The
number of non-local transactions of anomalous merchants
within ten minutes is higher than that of normal merchants.
Most transactions of normal merchants are offline, but anoma-
lous merchants tend to conduct online transactions, resulting
in more non-local transactions.

(3) Irregular transaction time (Fig. 2(c)): The transaction
frequency peaks of normal catering merchants in China occur
regularly from 6:00 to 8:00, 11:00 to 13:00, and 17:00 to
19:00. We found that anomalous merchants also had a large
number of transactions in other periods. That being said, the
transaction peaks of anomalous merchants occur irregularly,
e.g., they may occur after lunch or dinner time.

(4) High transaction amount (Fig. 2(d)): We use min-max
normalization to normalize transaction amounts in the in-
terval [0,1]. The peak of the transaction amount in normal
merchants is distributed between 0.4 and 0.5. We discovered
that the transaction amount peak is distributed around 0.7 for
anomalous merchants; thus, the amount of some anomalous
transactions is higher than that of the merchant’s historical
transactions.
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Fig. 2: Density distribution of data features with respect to (a) the number of total transactions within ten minutes, (b) the
number of non-local transactions within ten minutes, (c) transaction time, (d) transaction amount and (e) payment type.
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Fig. 3: The values of the most discriminative features of the
three cluster centroids.

(5) Tendency of using a mini program for payment (Fig.
2(e)): A bsc (business-scan-consumer) transaction is paid by
a barcode or QR code, while a wap (wireless application
protocol) transaction is paid by a mini program. Normal
merchants involve bsc and wap transactions, but the payment
type for anomalous transactions is more inclined to mini-
program payment.

Besides, due to the different types of catering (such as
desserts, bars, and hot pots) operated by merchants on the in-
tegrated payment platform, multiple business activity patterns
(Fig. 3) exist among those merchants. We clustered merchants
using K-means to explore different merchant activity patterns
and found that there are three groups hidden in the data. Fig.
3 presents the most discriminative features of the three cluster
centroids, i.e., the features with significant differences between
their values. According to the characteristics shown by the
features, we define these three clusters as high-frequency wap

(HfW) transactions, low-frequency wap (LfW) transactions,
and high-frequency mixed (HfM) transactions (including both
wap and bsc transactions). Merchants in the HfW transaction
cluster and HfM transaction cluster are more active than those
in the LfW transaction cluster. The fraction of bsc transactions
in the HfM transaction cluster is relatively high, while most of
the transactions in the HfW transaction cluster and the LfW
transaction cluster are wap transactions.

C. Proposed Model

In this section, we present the proposed TransAD model,
which includes three components: clustering, non-target
anomaly filtering, and detection. Since merchants on the
platform conduct various business activities, we first apply
K-means to group merchants with similar transaction patterns
into the same cluster. Each cluster may include normal mer-
chants, a portion of non-target anomalies, and a small number
of target anomalies. Second, we filter out non-target anomalies
as much as possible through the filtering component. Our
model is designed to focus on identifying target anomalies that
present a critical threat to maintaining a secure and reliable
payment environment. Third, the model detects anomalies
from three aspects: transaction context, historical transactions,
and merchant information. Below we describe the non-target
anomaly filtering and detection procedures in detail.

1) Non-target Anomaly Filtering: After the clustering pro-
cess, the unlabeled data within each group comprises a
substantial number of normal merchants, a fraction of non-
target anomalies, and possibly several target anomalies. Con-
sidering that non-target anomalies can affect the learning of
normal patterns, thereby complicating the identification of



target anomalies, we apply filtering components to effectively
emilinate non-target anomalies.

Inspired by iForest [9], we first introduce the isolation
score IS(mi) to separate target and non-target anomalies from
normal merchants. IS(mi) is formulated as

IS (mi) = 2−
E(h(mi))

T (n) , (1)

where T (n) = 2H(n−1)− 2(n−1)
n . Note that n represents the

sample size, h(mi) is the number of edges mi passes through
from the root to a leaf node in a totally random tree, T (n) is
the average path length for which a totally random tree search
fails, and H(n−1) can be approximated by ln(n−1)+0.577
(Euler’s constant).

Next, we consider the similarity score SS (mi), which mea-
sures the degree of similarity between merchants to separate
target anomalies from the rest of the merchants.SS (mi) is
calculated as the minimum Euclidean distance between the
selected and anomalous merchants, i.e.,

SS (mi) = e−di , (2)

such that di = mink∈{1,...,A} (mi − µk)
2, where A is the num-

ber of anomalous merchants and µk is the vector representation
of the kth anomalous merchant.

The IS(mi) scores of target and non-target anomalies are
higher than those of normal merchants, while SS(mi) scores
of non-target anomalies are lower than those of target anoma-
lies. For each cluster k, We complete the filtering of non-target
anomalies according to: IS(mi) > τis and SS(mi) < τss,
where the isolation threshold τis is the average value of
the IS(mi) of anomalous merchants, while the similarity
threshold τss is a fixed quantile value of SS (mi).

2) Detection: According to the descriptive analysis in Sec-
tion III-B, we design a detection mechanism through learning
transaction representations encapsulated within hyperspheres
from three aspects: transaction context, historical transactions,
and merchant information.
Transaction Context. This module focuses on learning trans-
action representations by taking into account the context of
a transaction, which encompasses temporally adjacent trans-
actions. From Fig. 2, it can be inferred that the transaction
context usually contains rich information that can assist in
learning the representation of the transaction to which they
are adjacent. A similar concept is leveraged in Graph Attention
Networks (GAT) [26], which apply attention mechanisms to
graph neural networks to assign different weights to neigh-
boring nodes and thus better capture contextual information.
Therefore, we consider GAT as the encoder of the transaction
context module. Each transaction can be represented as a node
and linked with other transactions that occurred at adjacent
timesteps. The decoder is a feedforward neural network that
reconstructs the latent representation of a transaction through
two fully connected layers. The encoder and decoder of the
transaction context module are formulated as

Ztik = GAT(tik, Cik) , t′ik = g (Ztik) , (3)

where tik is the original input of the kth transaction of the
merchant mi to the graph attention layer, Cik is a set of neigh-
bors describing the context of tik, Ztik is the latent feature
representation generated by the graph attention network, and
t′ik is the reconstructed representation of tik.
Historical Transaction. Although the transaction context fo-
cuses on information about transactions at adjacent timesteps,
more details about a given transaction can be gleaned from
historical transactions, as the difference between a transac-
tion and its preceding ones can reflect the possibility of it
being anomalous. Considering that Long-Short Term Memory
(LSTM) [27] has been shown to achieve excellent performance
in learning long-term dependencies in various application
domains, we leverage LSTM as the encoder in the historical
transaction module. Statistics of transactions that occurred
around the same time as a given transaction in the past T days
are input into the LSTM encoder to learn the representation of
that transaction. Likewise, a fully connected network acts as
a decoder for reconstructing historical transaction inputs. The
encoder and decoder of the historical transaction module are
formulated as

Z
h
d−j
ik

= LSTM
(
Z

h
d−1−j
ik

, hd−j
ik

)
(j ∈ {T − 1, T − 2, . . . , 1}),

hd
ik

′
= g

(
Z

hd−1
ik

)
,

(4)
where Zhd−j

ik
is the hidden layer output of the LSTM unit,

Zhd−1
ik

is the latent feature representation generated by the final

LSTM unit, hd−j
ik is the historical transaction representation

on the jth day before tik, and hd
ik

′ is the reconstructed
representation of the historical transactions.
Merchant Information. The above two modules consider the
context and historical transactions over a certain time period
from the perspective of a given transaction. However, consider-
ing only transaction information is sometimes not enough to
identify anomalies, and specific merchant information needs
to be considered. Therefore, we utilize merchant information
to assist the learning of transaction representations and apply
fully connected networks as the encoder and decoder, respec-
tively. The encoder and decoder of the merchant information
module are formulated as

Zmi
= f (mi) , mi

′ = g (Zmi
) , (5)

where mi is the merchant information corresponding to the
given transaction, Zmi

is the latent representation of the
merchant corresponding to the given transaction, and mi

′ is
the reconstructed vector representation of mi.

3) Training and Testing: We describe the training and
testing procedures of the proposed model TransAD below.
After preprocessing, the training data is input to the cluster-
ing component and grouped into multiple clusters (three in
our case, as determined by the elbow method) by merchant
activities. Then, the data in the three clusters are separately
entered into the filter to remove non-target anomalies. The
data that excludes non-target anomalies is finally passed to the
detection component, which learns representations of normal



TABLE I: Descriptive statistics of the collected dataset.

Data Size
Training set Validation set Testing set

Unlabeled transaction data 15,077,652 15,503,142 14,851,966
Unlabeled merchants 171,366 173,504 173,491

Anomalous merchants 0 43 88

transactions encapsulated within hyperspheres to obtain sphere
center representations in the three respective latent feature
spaces. The initial model parameters are continuously updated
to minimize the reconstruction loss,

Lp =
1

n

∑
n

(∥∥tik′ − tik
∥∥2

+ β
∥∥∥hd

ik

′ − hd
ik

∥∥∥2

+ γ
∥∥mi

′ −mi

∥∥2
)
,

(6)
where n is the sample size, β and γ are trade-off parameters.
After updating the parameters, the sphere centers of the
three aspects in the latent feature space are calculated as
ct =

1
n

∑
n Ztik , ch = 1

n

∑
n Zhd−1

ik
, and cm = 1

n

∑
n Zmi

.
Thereafter, the detection component continues by adjusting

the parameters to propel the latent feature representations
of normal transactions closer to the sphere centers. Its loss
function is formulated as

Lf =
1

n

∑
n

(
∥Ztik − ct∥2 + β

∥∥∥Zhd−1
ik

− ch

∥∥∥2

+ γ ∥Zmi − cm∥2
)
.

(7)
After the model’s training is completed, the preprocessed

testing data is first divided into three merchant clusters ac-
cording to the distance between the merchant activity features
and the centroids. Then, non-target anomalies are filtered out
from the clustered testing data. Finally, for a given transaction
from the testing data, its anomaly score is obtained based
on the distances between the latent feature representations of
that transaction, its transaction history and its corresponding
merchant, and their respective center points, i.e.:

S(tik) = ∥Ztik − ct∥2 + β
∥∥∥Zhd−1

ik
− ch

∥∥∥2 + γ ∥Zmi
− cm∥2 .

(8)
We determine a threshold based on a separate validation

set, and transactions with scores exceeding the threshold
are considered anomalies. Ultimately, merchants involved in
abnormal transactions were identified as targeted anomalous
merchants.

IV. EXPERIMENTS

A. Setup

1) Dataset: To evaluate the performance of TransAD, we
used a real-world dataset from an integrated payment platform
provided by a company. Table I summarizes more specific
statistics about the dataset. The training, validation, and testing
datasets include the platform’s unlabeled data from September
2, 2021, September 3, 2021, and September 4, 2021, along
with their preceding seven-day periods, respectively. The busi-
ness personnel verified 131 anomalous merchants from July to
September 2021. The validation and testing sets contain 43 and
88 labeled anomalies, respectively.

We extracted the following three groups of features.
(1) Transaction features describe the relevant information

about transactions conducted at a given merchant. We ex-
tracted fifteen features that reflect three aspects: a. Transaction
state features including transaction status (success, refund, or
failure), payment type (barcode, QR code, or mini program),
and transaction channel (such as credit card, Alipay, WeChat
Pay, etc.); b. Transaction spatiotemporal information indicative
of whether the transaction is non-local, whether the transaction
occurs at night, and whether the transaction occurs during
meal times; c. Transactional amount features encompassing
the transaction amount itself, along with a series of associated
features indicating whether the transaction amount is a multi-
ple of ten, whether the transaction amount is a multiple of one
hundred, whether the transaction amount contains decimals,
whether the integer part of the transaction amount is a multiple
of ten, whether the transaction amount is within five CNY of
a multiple of hundred, whether the transaction amount is less
than one CNY, whether the transaction amount is one cent
CNY, and whether the transaction amount is in a special form
(e.g., numbers such as 666, 888, or 998, which are considered
lucky numbers in Chinese culture).

(2) Historical transaction features are aggregates of the
transaction features described in (1), represented by transaction
statistics (such as average or maximum) calculated on a weekly
basis.

(3) Merchant information features reflect the merchants’
scale, business rules, and management level. We extracted
twelve features, categorized into four groups: a. Merchant
scale features that include the number of merchant stores and
the number of cities where a merchant’s stores are located. b.
Merchant transaction frequency which refers to the fraction,
the numbers of hours, and the numbers of days of a merchant’s
successful transactions in the past seven days. c. The features
related to merchants’ transaction spatiotemporal information
including the concentration of payer IP addresses in the past
seven days per merchant, the number of cities where merchants
conducted stores’ code transactions in the past seven days, the
fraction of nighttime transactions in the past seven days for
merchants, and the fraction of mealtime transactions in the past
seven days per merchant. d. Features associated with payment
type proportions for merchants, which encompass the fraction
of payments through barcode/QR code (bsc transactions) in
the past seven days, the fraction of payments through a mini-
program (wap transactions) in the past seven days, and the
fraction of Alipay and WeChat payments in the past seven
days.

2) Data Preprocessing: We present the preprocessing of the
raw data below. (1) We normalize the transaction amount using
the min-max value of successful transactions in the merchant’s
monthly history. (2) Since exceeding the credit card limit will
result in a failed transaction, we delete the failed record if a
successful transaction exists within 5 minutes before or after
a failed transaction occurred. (3) A bsc transaction should be
a local transaction; thus, we correct the consumer’s IP address
if it is inconsistent with the merchant store’s IP address. (4)



TABLE II: F1-Score and AUPRC performance of TransAD, the baselines and ablated models.

Clusters HfW transaction HfM transaction LfW transaction
Metrics F1-Score AUPRC AUPRC-lift F1-Score AUPRC AUPRC-lift F1-Score AUPRC AUPRC-lift

Models

iForest 0.006 0.002 0.115 0.002 0.001 0.167 0.014 0.004 0.051
OCAN 0.005 0.002 0.115 0.007 0.002 0.166 0.021 0.011 0.044

OCSVM 0.030 0.012 0.105 0.040 0.003 0.165 0.087 0.018 0.037
DeepSVDD 0.007 0.003 0.114 0.003 0.001 0.167 0.034 0.017 0.038

FROCC 0.001 0.001 0.116 0.001 0.001 0.167 0.004 0.001 0.054
TransAD−h 0.126 0.098 0.019 0.003 0.060 0.108 0.063 0.033 0.022
TransAD−m 0.016 0.004 0.113 0.006 0.002 0.166 0.010 0.027 0.028

TransAD−h,−m 0.010 0.002 0.115 0.018 0.016 0.152 0.068 0.022 0.033
TransAD 0.157 0.117 0.004 0.168 0.107 0.055

We use one-hot encoding for the categorical features.
3) Baselines: We compared the performance of our model

and state-of-the-art anomaly detection methods.

• iForest [4] detects anomalies based on how many steps
are needed to isolate instances using isolation trees.

• OCSVM [28] finds an optimal hyperplane in the latent
feature space to achieve the maximum separation of the
target data and the coordinate origin.

• DeepSVDD [20] builds a hypersphere to contain as much
normal data as possible.

• OCAN [21] generates anomalous data where the density
of normal data is sparse.

• FROCC [3] randomly projects normal data onto a set
of unit vectors and uses the boundary of the projected
region to identify anomalous samples.

4) Metrics and Parameter Settings: To compare the effec-
tiveness of the proposed model and that of the baselines, we
analyze the metrics derived from the confusion matrices calcu-
lated for each model, involving F1-Score and Area Under the
Precision-Recall Curve (AUPRC). TransAD was trained with
batches of 512 samples (determined based on validation set
performance), optimizing it loss functions (see Training and
Testing in Section III-C) over 10 and 20 iterations respectively.
For OCSVM, we employed a radial basis function kernel with
a coefficient of 0.0001 and capped the iterations at 20, while
other hyperparameters were set using their default values in
scikit-learn. As for the remaining baselines, we used their
open-source implementations with default hyperparameters,
with DeepSVDD and OCAN having the same batch size and
iterations as our model’s. The experiments were carried out
on an Alibaba Cloud DSW server featuring an Intel Xeon
Platinum 8269CY CPU, running Ubuntu 18.04, with 60 GB
of memory.

B. Results and Discussion

In the experiments, we focus on the following research
questions (RQs). RQ1: What is the overall performance of
TransAD compared to the baselines? RQ2: How effective are
the clustering and filtering components of the model? RQ3:
What are the contributions of different aspects in the detection
component? RQ4: How sensitive is TransAD to the trade-
off parameters β, γ, and the selected context window in the
detection component?

1) Overall performance (RQ1): Table II includes the results
of our model and the baselines obtained for the three clusters
with respect to F1-Score and AUPRC. The F1-Score and
AUPRC results for both the baseline models and TransAD
are relatively low due to the highly imbalanced characteristic
of the real-world dataset we utilized, which contains only
0.05% anomalies in the testing data. For instance, AUPRC
can reflect the identification of anomalous merchants when
the data is unbalanced. TransAD exhibits satisfactory overall
performance and absolute superiority in terms of AUPRC,
with an improvement of 10.5%-11.6%, 16.5%-16.7%, and
3.7%-5.4% on average for the three clusters, respectively. The
baseline methods can only achieve better results with respect
to F1-Score for a single cluster, which has certain limitations.

Apart from the results of F1-Score and AUPRC, we also
illustrate the advantage of our model from the perspective
of business personnel verification. Since the verification pro-
cess is manual and time-consuming, the number of predicted
anomalies that can be verified is very limited. We focus
on inspecting the top N (N ∈ {9, 15, 30, 45, 99}) predicted
anomalous merchants, sorted by their anomaly scores. Fig. 4(a)
compares the number of labeled target anomalies identified
by TransAD and the baselines without clustering. At N = 9,
our model can already identify 4 labeled anomalies. As N
increases to 99, iForest, DeepSVDD, and OCAN identified
0.667, 0.333, and 0.333 labeled anomalies on average, while
OCSVM and FROCC were unable to identify any labeled
anomalies. Nevertheless, our model can identify 11 labeled
anomalies.

Next, we applied the clustering mechanism described in
Section III-C to each baseline. Fig. 4(b) shows a comparison
of TransAD and the baselines with clustering in identifying
labeled target anomalies, and our model still outperforms the
state-of-the-art. Combining the observations from Fig. 4(a) and
Fig. 4(b), the baselines whose performance is affected after
incorporating the clustering mechanism are iForest, OCSVM,
OCAN, and DeepSVDD. iForest’s ability to identify anomalies
deteriorated. Thus, it is more appropriate for iForest to use the
entire dataset for training. The results of OCAN, OCSVM,
and DeepSVDD improved because they are based on the one-
class classification method, which is aided by the clustering
mechanism as it groups merchants with similar transaction
patterns together.
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Fig. 4: The number of labeled anomalies in top N predicted anomalous merchants identified by TransAD and (a) the baselines
without clustering, (b) the baselines with clustering and (c) its three variants.

(a) (b) (c)

Fig. 5: AUPRC results obtained with different trade-off parameters in the (a) HfW, (b) HfM and (c) LfW transaction cluster.

2) Effect of clustering and filtering components (RQ2):
We experimented with three variants, TransADr

−C,−R,
TransADq

−C,−R, and TransAD−R, to assess the importance
of the clustering and filtering components. TransAD−C,−R in-
cludes only the detection component. Constrained by computa-
tional resources and considering the complexity of the model,
we selected 20,000 random (for TransADr

−C,−R) or high-
quality (for TransADq

−C,−R) merchants for training, respec-
tively. High-quality merchants are considered those that were
online for more than four months and for which the number of
successful transaction days in the past four months was greater
than or equal to 100 days. TransAD−R excludes the filtering
component. Fig. 4(c) presents the number of labeled anomalies
identified by TransAD and its three variants. The comparison
of the results of TransADr

−C,−R and TransADq
−C,−R demon-

strates that selecting high-quality merchants helps the model
to identify anomalies better. Moreover, after incorporating the
clustering mechanism, the model is able to scale up to larger
amounts of data as each cluster can be trained in parallel.
Compared to TransAD−C,−R, TransAD−R identifies more
labeled anomalies. Lastly, after filtering, non-target anomalies
are removed, and thus the detection rate has further improved.

3) Ablation Study (RQ3): To investigate the impact of the
different aspects (used in the detection component) on the
model’s anomaly detection ability, we tested three ablation
models: TransAD−h that excludes the historical transaction
aspect, TransAD−m that excludes the merchant information
aspect, and TransAD−h,−m that retains only the transaction
context aspect. Refer to Table II for the detailed experimental
results. TransAD exhibits the best AUPRC performance and
introduces improvements of 1.9%-11.5%, 10.8%-16.6%, and
2.2%-3.3% in the HfW transaction, HfM transaction, and LfW
transaction clusters, respectively. Therefore, learning historical
transactions and merchant information has the least impact
on the LfW transaction cluster. TransAD also attains excel-
lent results in terms of F1-Score, particularly on the HfW
transaction cluster. In summary, this ablation study confirms
the importance of the historical transaction and merchant
information modules in the detection component.

4) Parameter sensitivity (RQ4): We studied the effect
of the trade-off parameters β (β ∈ {1, 2, 3, 4, 5}) and γ
(γ ∈ {1, 10, 20, 30, 40, 50}) on the detection performance,
and Fig. 5 show the AUPRC values obtained on the three
clusters under different choices of the trade-off parameters.
We discovered that larger values of γ tend to achieve optimal



TABLE III: AUPRC performance and the average degree in the constructed graph using different context windows.

Clusters AUPRC (sparsity)
1 min 2 mins 3 mins 4 mins 5 mins 10 mins 15 mins

HfW trans. 0.109 (0.449) 0.089 (0.830) 0.060 (1.190) 0.110 (1.540) 0.078 (1.886) 0.117 (3.573) 0.105 (5.208)
HfM trans. 0.083 (0.553) 0.070 (1.077) 0.002 (1.569) 0.058 (2.042) 0.089 (2.506) 0.168 (4.727) 0.060 (6.851)
LfW trans. 0.035 (0.209) 0.035 (0.330) 0.023 (0.419) 0.037 (0.497) 0.055 (0.569) 0.047 (0.894) 0.032 (1.193)

detection results. But in Fig. 5(a), we have chosen a smaller β
value; that is, a lower weight value of the historical transaction
module achieved better results. Thus, historical transaction
information plays a less critical role in HfW transactions.

We then evaluated the effect of the temporal context win-
dow, a key parameter in the transaction context module, and
set its width to {1, 2, 3, 4, 5, 10, 15}. A wider context window
promotes more neighboring transactions. Table III lists the
AUPRC values obtained in the three clusters using different
context windows. Next to each AUPRC value, we provide the
average degree in the graph constructed by the transaction
context module. Optimal AUPRC is achieved in the HfW
and HfM transaction clusters in case a context window of
10 minutes is used. Due to the high frequency of transac-
tions in these two clusters, a wider context window would
provide more contextual information relevant to learning a
better representation of a given transaction. However, the
graph constructed based on a 15-minute context window is
already denser, which increases the complexity of the model.
On the other hand, the window size required to reach an
optimal AUPRC for the LfW transaction cluster is narrower.
The reason is that merchants in this cluster are inactive,
and transactions occur less frequently; thus, the constructed
transaction graph becomes more sparse.

V. CONCLUSION

We introduced TransAD, a novel transaction-level anomaly
detection model that encompasses clustering, non-target
anomaly filtering, and multi-aspect detection based on trans-
action representation learning, aimed to address various chal-
lenges posed by massive integrated payment data, and lo-
cates specific anomalous transactions to facilitate taking cor-
responding security measures. TransAD effectively alleviates
the shortcomings of state-of-the-art baselines on a real-world
integrated payment platform data, while identifying consider-
ably more labeled anomalies, which economizes unnecessary
labor resources for manual verification.
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